Расчет редуктора пример. Блог компании "GlobalProm". Определение допускаемых напряжений

В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.

При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:

  • тип редуктора;
  • мощность;
  • обороты на выходе;
  • передаточное число редуктора;
  • конструкция входного и выходного валов;
  • тип монтажа;
  • дополнительные функции.

Тип редуктора

Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:

  • Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
  • Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
  • Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
  • Цилиндрический соосный под любым углом . Оси валов располагаются в одной плоскости.
  • В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.

Важно! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.

  • Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
  • Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.

Таблица 1. Классификация редукторов по числу ступеней и типу передачи

Тип редуктора

Число ступеней

Тип передачи

Расположение осей

Цилиндрический

Одна или несколько цилиндрических

Параллельное

Параллельное/соосное

Параллельное

Конический

Коническая

Пересекающееся

Коническо-цилиндрический

Коническая

Пересекающееся/скрещивающееся

Червячный

Червячная (одна или две)

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Цилиндрическая (одна или две)
Червячная (одна)

Скрещивающееся

Планетарный

Два центральных зубчатых колеса и сателлиты (для каждой ступени)

Цилиндрическо-планетарный

Цилиндрическая (одна или несколько)

Параллельное/соосное

Коническо-планетарный

Коническая (одна) Планетарная (одна или несколько)

Пересекающееся

Червячно-планетарный

Червячная (одна)
Планетарная (одна или несколько)

Скрещивающееся

Волновой

Волновая (одна)

Передаточное число [I]

Передаточное число редуктора рассчитывается по формуле:

I = N1/N2

где
N1 - скорость вращения вала (количество об/мин) на входе;
N2 - скорость вращения вала (количество об/мин) на выходе.

Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.

Таблица 2. Диапазон передаточных чисел для разных типов редукторов

Важно! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.

Крутящий момент редуктора

Крутящий момент на выходном валу - вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.

Номинальный крутящий момент - максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности - 1 и продолжительность эксплуатации - 10 тысяч часов.

Максимальный вращающий момент - предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.

Необходимый крутящий момент - крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.

Расчетный крутящий момент - значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:

Mc2 = Mr2 x Sf <= Mn2

где
Mr2 - необходимый крутящий момент;
Sf - сервис-фактор (эксплуатационный коэффициент);
Mn2 - номинальный крутящий момент.

Эксплуатационный коэффициент (сервис-фактор)

Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.

Таблица 3. Параметры для расчета эксплуатационного коэффициента

Тип нагрузки

К-во пусков/остановок, час

Средняя продолжительность эксплуатации, сутки

Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины

Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины

Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины

Мощность привода

Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.

Элементарная формула расчета мощности [Р] - вычисление соотношения силы к скорости.

При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:

P = (MxN)/9550

где
M - крутящий момент;
N - количество оборотов/мин.

Выходная мощность вычисляется по формуле:

P2 = P x Sf

где
P - мощность;
Sf - сервис-фактор (эксплуатационный коэффициент).

Важно! Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении: P1 > P2

Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.

Коэффициент полезного действия (КПД)

Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:

η [%] = (P2/P1) x 100

где
P2 - выходная мощность;
P1 - входная мощность.

Важно! В червячных редукторах P2 < P1 всегда, так как в результате трения между червячным колесом и червяком, в уплотнениях и подшипниках часть передаваемой мощности расходуется.

Чем выше передаточное отношение, тем ниже КПД.

На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.

Таблица 4. КПД червячного одноступенчатого редуктора

Передаточное число КПД при a w , мм
40 50 63 80 100 125 160 200 250
8,0 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96
10,0 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95
12,5 0,86 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94
16,0 0,82 0,84 0,86 0,88 0,89 0,90 0,91 0,92 0,93
20,0 0,78 0,81 0,84 0,86 0,87 0,88 0,89 0,90 0,91
25,0 0,74 0,77 0,80 0,83 0,84 0,85 0,86 0,87 0,89
31,5 0,70 0,73 0,76 0,78 0,81 0,82 0,83 0,84 0,86
40,0 0,65 0,69 0,73 0,75 0,77 0,78 0,80 0,81 0,83
50,0 0,60 0,65 0,69 0,72 0,74 0,75 0,76 0,78 0,80

Таблица 5. КПД волнового редуктора

Таблица 6. КПД зубчатых редукторов

По вопросам расчета и приобретения мотор редукторов различных типов обращайтесь к нашим специалистам. C каталогом червячных, цилиндрических, планетарных и волновых мотор-редукторов , предлагаемых компанией Техпривод можно ознакомиться на сайте.

Романов Сергей Анатольевич,
руководитель отдела механики
компании Техпривод

Курсовая

Расчет редуктора

Введение

1.3 Кинематический расчет редуктора

2. Расчет закрытой червячной передачи

2.1 Выбор материалов

2.2 Определение допускаемых напряжений

3. Расчет цепной передачи

3.1. Выбор цепи

3.2. Проверка цепи.

3.3. Число звеньев цепи

3.5. Диаметры делительных окружностей звездочек

3.6. Диаметры наружных окружностей звездочек

3.7. Определение сил, действующих на цепь

4. Нагрузки валов редуктора

5.1 Выбор материала валов

6. Проверочный расчет валов

6.1 Расчет червячного вала

9. Смазка редуктора

10. Выбор и расчет муфты


Исходные данные:

Потребляемая мощность привода -

Частота вращения выходного вала -

Ресурс работы -

Коэффициент годового использования - .

Коэффициент суточного использования - .

Кинематическая схема привода


Введение

Привод механизма служит для передачи вращения от вала электродвигателя на исполнительный механизм.


1. Определение исходных данных к расчету редуктора

1.1 Выбор и проверка электродвигателя

Предварительно определим КПД привода.

В общем виде к.п.д. передачи определяется по формуле:

где - к.п.д. отдельных элементов привода.

Для привода данной конструкции к.п.д. определяется по формуле:

где - к.п.д. подшипников качения; ;

К.п.д. червячной передачи; ;

К.п.д. цепной передачи; ;

К.п.д. муфты; .

Рассчитаем требуемую мощность двигателя:

Выбираем двигатель серии АИР с номинальной мощностью Р ном = 5,5 кВт, применив для расчета четыре варианта типа двигателя (см. таблицу 1.1)

Таблица 1.1

Вариант

Тип двигателя

Номинальная мощность Р ном , кВт

Частота вращения, об/мин

синхронная

при номинальном режиме n ном

АИР100 L 2У3

5 ,5

3000

2 850

АИР 112M4 У3

5 ,5

1500

14 32

АИР 132S 6У3

5 ,5

1000

9 60

АИР 132M8 У3

5 ,5


1.2 Определение передаточного числа привода и его ступеней

Находим общее передаточное число для каждого из вариантов:

u = n ном /n вых = n ном /70.

Производим разбивку общего передаточного числа, принимая для всех вариантов передаточное число редуктора u чп = 20:

U рп = u/u зп = u/20.

Данные расчета сводим в таблицу 1.2

Таблица 1.2

Передаточное число

Варианты

Общее для привода

40 , 7

20 , 5

13,7

10 ,2

Плоскоременной передачи

2 , 04

1 , 02

0 , 685

0 , 501

Зубчатого редуктора

Из рассмотренных четырех вариантов выбираем первый (u=2,04; n ном = 3000 об/мин).

1. 3 Кинематический расчет редуктора

Согласно заданию общее передаточное число привода равно:

Частота вращения вала электродвигателя и входного вала редуктора.

Частота вращения выходного вала редуктора

Частота вращения вала транспортера

Процент фактического передаточного числа относительно номинального:

Так как при выполняется условие, то делаем вывод, что кинематический расчет выполнен удовлетворительно.

Мощности, передаваемые отдельными частями привода:

Угловые скорости зубчатых колес:

Вращающие моменты:

Результаты расчетов сведем в таблицу 1.3.

Таблица 1.3

Результаты кинематического расчета.

Параметры

Вал №1

Вал №2

Вал № 3

2850

142,5

4,92

4,091

3, 8

16,5

274,3

519,8

2,04

ω , рад/с

298,3

14,915

7,31

Определим время работы привода:

Часов.


2 . Расчет закрытой червячной передачи

2.1 Выбор материалов

Принимаем для червяка сталь 40Х с закалкой до твёрдости Н RC 45 и последующим шлифованием.

Примем предварительно скорость скольжения в зацеплении

М/с.

Для венца червячного колеса принимаем бронзу Бр010Ф1Н1 (отливка центробежная) .

Таблица 2.1

Материалы зубчатых колес

Твердость и термическая обработка

Предел прочности

Предел текучести

Червяк

Н RC 45-закалка

900 МПа

750 МПа

Колесо

Бр010Ф1Н1 –отливка центробежная

285МПа

1 65 МПа

2.2 Определение допускаемых напряжений

Для колес, изготовленных из материалов группы I /1, c . 31/:

где, 0,9 для червяков с твердостью на поверхности витков >45H RC

МПа

МПа.

Допускаемое напряжение на изгиб

где T и ВР – пределы текучести и прочности бронзы при растяжении; N FE – эквивалентное число циклов нагружения зубьев по изгибной выносливости.

Эквивалентное число циклов нагружения:

Расчет допускаемого напряжения на изгиб:

2.3 Определение геометрических параметров передачи

Межосевое расстояние

Принимаем а w = 160 мм .

Для передаточного числа U =20 принимаем Z 1 =2.

Откуда число зубьев червячного колеса Z 2 = U · Z 1 =20·2=40.

Определим модуль зацепления .

Принимаем m =6,3 мм.

Коэффициент диаметра червяка q =(0,212…0,25) · Z 2 =8,48…10 .

Принимаем q =10.

Межосевое расстояние при стандартных значениях и:

Основные размеры червяка:

делительный диаметр червяка

диаметр вершин витков червяка

диаметр впадин витков червяка

длина нарезанной части шлифованного червяка

принимаем

делительный угол подъёма витка

Основные размеры венца червячного колеса:

делительный диаметр червячного колеса

диаметр вершин зубьев червячного колеса

диаметр впадин зубьев червячного колеса

наибольший диаметр червячного колеса

ширина венца червячного колеса

2.4 Проверочные расчеты передачи по напряжениям

Окружная скорость червяка

Проверка контактного напряжения.

Уточняем КПД червячной передачи:

Коэффициент трения, угол трения при данной скорости скольжения.

По ГОСТ 3675-81 назначаем 8 степень точности передачи.

Коэффициент динамичности

Коэффициент распределения нагрузки: , где коэффициент деформации червяка, вспомогательный коэффициент.

Отсюда:

Коэффициент нагрузки

Проверяем контактное напряжение

Проверка прочности зубьев червячного колеса на изгиб:

Эквивалентное число зубьев

Коэффициент формы зуба

Напряжение изгиба, что ниже вычисленного ранее.

Результаты расчета заносим в табл. 2.2.

Таблица 2.2

Параметр

Значение

Параметр

Значение

Межосевое

расстояние, мм

КПД

0,845

Модуль, мм

ширина венца червячного колеса, мм

Коэффициент диаметра червяка q

длина нарезанной части шлифованного червяка, мм

Делительный угол подъема витков червяка

Диаметры червяка, мм:

75,6

47,88

Диаметры червяка, мм:

264,6

236,88


3. Расчет цепной передачи.

Таблица 3.1.

Передача

Передаточное отношение

2,04

Крутящий момент на ведущей звездочке Т 23 , Нм

2743 00

Крутящий момент на ведомой звездочке Т 4 , Нм

5198 00

Угловая скорость ведущей звездочки, рад/с

14,91 5

Частота вращения ведомой звездочки, рад/с

7,31

3.1. Выбор цепи.

Выбираем цепь приводную роликовую (по ГОСТ 13568–75) и определяем ее шаг по формуле:

Предварительно вычисляем величины, входящие в эту формулу:

Вращающий момент на валу ведущей звездочки

Коэффициент K э= k д k а k н k р k см k п ;

из источника /2/ принимаем: k д =1,25(передача характеризуется умеренными ударами);

k а =1[так как следует принять а=(30-50) t ];

k н =1(при любом наклоне цепи);

k р =1(регулирование натяжения цепи автоматическое);

k см =1,5(смазывание цепи периодическое);

k п =1(работа в одну смену).

Следовательно, Кэ=1,25  1,5=1,875;

Числа зубьев звездочек:

ведущей z 2 =1-2  u =31-2  2,04=27

ведомой z 3 =1  u =27  2,04=54;

Среднее значение [ p ] принимаем ориентировочно по таблице /2/: [ p ]=36МПа; число рядов цепи m =2;

Находим шаг цепи

22,24 мм.

По таблице /2/ принимаем ближайшее большее значение t =25,4 мм; проекция опорной поверхности шарнира А оп =359 мм Q =113,4 кН; q =5,0 кг/м.

3.2. Проверка цепи.

Проверяем цепь по двум показателям:

По частоте вращения – допускаемая для цепи с шагом t =25,4 мм частота вращения [ n 1 ]=800 об/мин, условие n 1 [ n 1 ] выполнено;

По давлению в шарнирах – для данной цепи значение [ p ]=29 МПа, а с учетом примечания уменьшаем на 15% [ p ]=24,7; расчетное давление:

где

Условие p [ p ] выполнено.

3.3. Число звеньев цепи.

Определяем число звеньев цепи.

Округляем до четного числа L t =121.

3.4. Уточнение межосевого расстояния

Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 0.4%, 1016  0,004=4,064 мм.

3.5. Диаметры делительных окружностей звездочек.

3.6. Диаметры наружных окружностей звездочек.

здесь d 1 –диаметр ролика цепи: по таблице /2/ d 1 =15,88 мм.

3.7. Определение сил, действующих на цепь.

окружная F t = 2512 Н;

центробежная F v = qv 2 = 5  1,629 2 =13,27 Н;

от провисания цепи F f =9,81 k f qa =9,81  1,5  5  1,016=74,75 H ;

3.8. Проверка коэффициента запаса прочности

По таблице /2/ [ s ]=7,6

Условие s [ s ] выполнено.


Таблица 3.2. Результаты расчета

Рассчитываемый параметр

Обозначение

Размерность

Численное значение

1. Межосевое расстояние

А 23

мм

1 016

2. Число зубьев ведущей звездочки

3. Число зубьев ведомой звездочки

6. Диаметр делительный окружности ведущей звездочки

d д2

мм

218, 7 9

7. Диаметр делительной окружности ведомой звездочки

d д3

мм

43 6 ,84

9. Диаметр наружной окружности ведущей звездочки

D e 2

мм

230,17

10. Диаметр наружной окружности ведомой звездочки

D e 3

мм

448,96

16. Окружная сила

2512

17. Центробежная сила

13,27

18. Сила от провисания цепи

74 , 75

F п

2661, 5


4. Нагрузки валов редуктора

Определение сил в зацеплении закрытой передачи

а) Окружные силы

б) Радиальные силы

в) Осевые силы

Определение консольных сил

Определим силы, действующие со стороны открытой передачи:

Со стороны муфты

F м = 75  =75  = 1242 Н.

Силовая схема нагружения валов редуктора представлена на рисунке 4.1.

Рисунок 4.1. Схема нагружения валов червячного редуктора.


5. Проектный расчет. Эскизная компоновка редуктора

5.1 Выбор материала валов

5.2 Выбор допускаемых напряжений на кручение

Проектный расчет выполняем по напряжениям кручения, при этом принимаем [ к ]= 15…25Н/мм 2 .

5.3 Определение геометрических параметров ступеней валов

Схема к расчету представлена на Рисунке 5.1

Рисунок 5.1 – Червяк.

Диаметр выходного конца ведущего вала находим по формуле

мм,

где [τ К ] - допускаемое напряжение на кручение; [τ К ] = 15 МПа.

Согласовав с диаметром выходного участка электродвигателя (d эд = 28 мм) подустановку стандартной муфты, принимаем d в1 = 30 мм.

где t – высота буртика

t (h – t 1 )+0.5,

h –высота шпонки, h =8 мм

t 1 –глубина паза ступицы, t 1 =5 мм, значит t (8–5)+0.5, t 3,5, принимаем t =4.

принимаем

мм, принимаем 45 мм .

где r –радиус скругления внутреннего кольца подшипника, r =1.5

принимаем.

Червяк конструируем заодно с валом – вал-червяк.

Вал колеса редуктора рассчитываем аналогично.

Схема к расчету вала колеса представлена на рисунке 5.2

Рисунок 5.2 – Вал колеса

Диаметр выходного конца вала

Принимаем

– ориентировочное значение диаметра буртика вала:

Высота шпонки h =10 мм, глубина шпоночного паза t 1 =6 мм,

значит t (10–6)+0.5, t 4,5, принимаем t =5.

принимаем

–диаметр вала под подшипники:

мм, принимаем 70 мм .

– ориентировочное значение диаметра буртика для упора подшипников:

где r = 2 .5

принимаем

Червячное колесо исполняется сборным – центр из серого чугуна СЧ-21-40, а зубчатый венец – с бронзы Бр010Ф1Н1. Зубчатый венец соединен с центром колеса посадкой с натягом и винтовым креплением.

Определим конструктивные элементы центра колеса.

Толщина обода центра колеса.

мм.

Принимаем мм.

Толщина диска центра колеса.

Мм.

Принимаем мм.


Диаметр центрального отверстия центра колеса

Мм.

Наружный диаметр ступицы колеса

Мм.

Принимаем мм.

Длина ступицы

мм.

Принимаем мм.

Рисунок 5.3 Конструкция червячного колеса

Определим толщину обода для червячного колеса в самом тонком месте.

Мм.

Принимаем мм.


Диаметр соединения зубчатого венца с центром колеса

Принимаем мм.

5.4 Предварительный выбор подшипников качения

Предварительно намечаем радиальные шарикоподшипники средней серии по ГОСТ 4338-75; габариты подшипников выбираем по диаметру вала в месте посадки подшипников d п1 = 45 мм и d п2 = 70 мм.

По каталогу подшипников выбираем подшипники .

Таблица 5.1 – Характеристики выбранных подшипников

Условное обозначение подшипника

Размеры, мм

Грузоподъемность, кН

Со

7309А

7214А

26,25

52,7

5.5 Эскизная компоновка редуктора

Определяем размеры для построения эскизной компоновки.

а) зазор между внутренней стенкой корпуса и вращающимся колесом:

х=8…10 мм, принимаем х=10 мм.

б) расстояние между дном корпуса и червячным колесом:

у=30 мм


6. Проверочный расчет валов

6.1 Расчет червячного вала

6.1.1 Схема нагружения червяка

Рисунок 6.1 – Схема нагружения ведущего вала

в плоскости xy

в плоскости yz

Суммарные изгибающие моменты

6.1.2 Уточненный расчет вала

Проверим правильность определения диаметра вала в сечении под червяком

Для вала принимаем сталь 45 ГОСТ 1050-88. Термообработка улучшение – НВ 240…255

Пределы выносливости

d =45мм

Момент сопротивления сечения

6.1.3 Расчет вала на усталость

Среднее напряжение изгиба

где, - масштабные факторы,

где согласно табл.

При проточке.

Тогда

Окончательно получим

6.1.4 Расчет подшипников

где: V V =1 – при вращении внутреннего кольца.- коэффициент безопасности для редукторов всех конструкций. - температурный коэффициент, при t≤100°С

Для опоры В как наиболее нагруженной

Тогда

так как то X=1, Y=0.

6.2. Расчет тихоходного вала.

6.2.1 Схема нагружения тихоходного вала

Рисунок 6.2 – Схема нагружения тихоходного вала.

в плоскости x у.

в плоскости yz

Суммарные изгибающие моменты

6.2.2 Уточненный расчет вала

Проверим правильность определения диаметра вала в сечении под червячным колесом

Эквивалентный изгибающий момент в сечении

Для вала принимаем сталь 45 ГОСТ 1050-88. Термообработка улучшение – НВ 240…255,

Пределы выносливости

Допускаемое напряжение изгиба

где: - масштабный фактор. При d =70мм

Коэффициент запаса прочности. Принимаем

Коэффициент концентрации напряжения, для шпоночного соединения

Момент сопротивления сечения

Напряжение в сечении меньше допускаемого, поэтому окончательно принимаем диаметр вала в месте установки подшипника.

6.2.3 Расчет вала на усталость

Принимаем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения – по пульсирующему.

Наиболее опасным является сечение в месте расположения червяка.

Моменты сопротивления сечения

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Среднее напряжение изгиба

Коэффициенты запаса усталостной прочности по нормальным и касательным напряжениям

где, - масштабные факторы,

Коэффициенты концентрации напряжений с учетом влияний шероховатости поверхности.

где согласно табл.

Коэффициенты влияния шероховатости поверхности

При проточке.

Тогда

При отсутствии упрочнения вала.

Коэффициенты чувствительности материала к асимметрии цикла напряжений.

Окончательно получим

Так как, то вал достаточно прочен.

6.2.4 Расчет подшипников

Эквивалентную динамическую нагрузку подшипника определим по формуле:

где: V – коэффициент вращения кольца. V =1 – при вращении внутреннего кольца.

- коэффициент безопасности. для редукторов всех конструкций.

- температурный коэффициент, при t≤100°С.

Для опоры D как наиболее нагруженной

тогда

Так как то X=1, Y=0.

Расчетная долговечность подшипника

Так как срок службы редуктора, то подшипник подобран правильно.


7. Конструктивная компоновка привода

Толщина стенки корпуса и крышки

принимаем

принимаем

Толщина нижнего пояса (фланца)

Толщина верхнего пояса (фланца)

Толщина нижнего пояса корпуса

Толщина рёбер основания корпуса

Толщина рёбер крышки

Диаметр фундаментных болтов

принимаем

Ширина лапы при установке винта с шестигранной головкой

Расстояние от оси винта до края лапы

принимаем

Толщина лапы корпуса

принимаем

Остальные размеры принимаем конструктивно при построении чертежа.


8. Проверка шпоночных соединений

Размеры шпонок выбираем, в зависимости от диаметра вала

Принимаем шпонки призматические по ГОСТ 23360-78. Материал шпонок – сталь 45 нормализованная. Допускаемое напряжение смятия боковой поверхности, длину шпонки принимаем на 5…10мм меньше длины ступицы.

Условие прочности

Соединение вала с зубчатым колесом 2, диаметр соединения 45мм.

Сечение шпонки, длина шпонки 40 мм.

Расчет остальных шпонок в редукторе представим в виде таблицы

Таблица 8.1 – Расчет шпоночных соединений.

№ вала

, Нм

d в,мм

L, мм

I

16,5

30

10х8

5

40

12,2

II

274,3

50

16х10

6

80

42,6

II

274,3

80

22х14

9

70

28,6

Таким образом, все шпоночные соединения обеспечивают заданную прочность и передают вращающий момент.


9. Смазка редуктора

Смазка зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колес примерно на 15…20мм.

Объем масляной ванны V, м 3 , определяем из расчета масла на 1 кВт передаваемой мощности.

При внутренних размерах корпуса редуктора: В=415 мм L=145 мм, определим необходимую высоту масла в корпусе редуктора

Принимаем масло индустриальное Н100А ГОСТ 20799-75.

При окружной скорости колес более 1м/с брызгами масла покрываются все детали передач и внутренних поверхностей стенок, стекающие с этих элементов капли масла попадают в подшипники.


10. Выбор и расчет муфты

Исходя из условий работы данного привода выбираем муфту упругую втулочно - пальцевую, со следующими параметрами Т = 125Нм, d = 30мм, D = 120мм, L = 165 мм, l = 82 мм.

Рис 10.1.Эскиз муфты

Предельные смещения валов:

-радиальные;

-угловые;

-осевые.

10.1. Проверяем на смятие упругие элементы, в предположении равномерного распределения нагрузки между пальцами:

,

где - вращающий момент, Нм,

- диаметр пальца,

- длина упругого элемента,

- число пальцев, = 6, потому что < 125 Нм

10.2 Рассчитываем на изгиб пальцы (Сталь 45).

с – зазор между полумуфтами, с = 3…5 мм.

Выбранная муфта пригодна для использования в данном приводе.


Заключение

Электродвигатель превращает электрическую энергию в механическую, вал двигателя совершает вращательное движение, но число оборотов вала двигателя очень велико для скорости движения рабочего органа. Для снижения числа оборотов и увеличения момента вращения и служит данный редуктор.

В данном курсовом проекте разработан одноступенчатый червячный редуктор. Цель работы выучить основы конструирования и получить навыки инженера-конструктора.

К важным требованиям проектирования относится экономичность в изготовлении и эксплуатации, удобство в обслуживании и ремонте, надежность и долговечность редуктора.

В пояснительной записке выполнен расчет необходимый для конструирования привода механизма.


Список использованных источников

1. Дунаев П.Ф. Конструирование узлов и деталей машин- М.: Высшая школа, 2008, - 447 с.

2. Киркач Н.Ф., Баласанян Р.А. Расчет и проектирование деталей м а шин.- Х.: Основа, 2010, - 276 с.

3. Чернавский С.А. Курсовое проектирование деталей машин.- М.: Машиностроение, 2008, - 416 с.

4. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб пособие для техникумов. – М.: Высш. шк., 2010. – 432с.

Расчет мощности и подбор мотор - редуктора

Мощность двигателя для преодоления сопротивлений передвижению определяем по формуле

где: V - скорость передвижения крана, м/с.

з - КПД привода. Ориентировочно - 0,9, /3/;

Так как привод механизма состоит из двух раздельных мотор-редукторов, то мощность каждого определяем по формуле:

Подбор мотор-редуктора производим, также по такой величине, как частота вращения выходного вала, которую определяем через частоту вращения колеса, определяемую по формуле

где - диаметр колеса, м;

V - скорость передвижения крана, м/мин;

Принимаем мотор - редуктор типа МП 3 2 ГОСТ 21356 - 75:

МП 3 2 - 63, /1/, имеющего следующие характеристики:

Номинальная мощность, кВт 5,50

Номинальная частота вращения выходного вала, мин- 1 45

Допустимый вращающий момент на выходном валу, Н*м 1000

Тип электродвигателя 4А112М4Р3

Частота вращения электродвигателя, мин- 1 1450

Диаметр конца выходного вала, мм 55

Масса мотор - редуктор, кг 147

Очевидно, что применение мотор - редуктора вместо обычной схемы позволяет снизить вес привода почти в три раза, и тем самым снизить стоимость реконструкции.

Подбор муфты

Для соединения валов мотор - редуктора и колеса принимаем муфту упругую втулочно-пальцевую МУВП-320. Проверим муфту по крутящему моменту, по формуле:

Где К - коэффициент режима работы, К=2,25, /3/;

Крутящий момент на валу муфты, Н*М;

Максимальный крутящий момент, передаваемый муфтой, Нм 4000

Момент инерции муфты, кг·м 2; 0,514

Масса, кг 13,3

Расчет тормозного момента и выбор тормоза

Тормозной момент, по которому подбирается тормоз механизма передвижения, должен быть таким, чтобы обеспечить остановку крана на определенном тормозном пути.

С другой стороны, он не должен быть слишком большим, иначе в процессе торможения может произойти пробуксовывание колес относительно рельса. Поэтому максимальный тормозной момент определяется из условия достаточного сцепления ходовых колес с рельсом.

Максимально допустимое значение, при котором обеспечивается заданный запас сцепления колес с рельсом, равный 1,2; для механизмов передвижения мостовых кранов /3/, определяем по формуле (10):

Принимаем движение при торможении равнозамедленным, получим минимальное время торможения по формуле (11):

Зная время торможения, определим необходимый тормозной момент по формуле:


Где - общая масса крана, кг;

Диаметр ходового колеса, м;

Частота вращения двигателя, мин- 1 ;

Передаточное число редуктора;

з - КПД привода;

(?J)I - суммарный момент инерции;

Где момент инерции ротора, кг*м 2 ;0,040. /10/;

Момент инерции муфты и тормозного шкива: 0,095 кг*м 2 , /3/;

(?J)I = 0,040+0,095=0,135 ;

Определим диаметр тормозного шкива по формуле (28):

Ширина тормозного шкива, мм 95

Диаметр вала, мм 42

Масса, кг 9,2

По определенному тормозному моменту принимаем тормоз ТКГ - 200, имеющего следующие характеристики /11/:

Номинальный тормозной момент, Н*М 250

Диаметр тормозного шкива, мм 200

Ход толкателя, мм 32

Отход колодки, мм 1,0

Тип толкателя, ТГМ-25

Масса, кг 37,6

Проверка на сцепление ходовых колес с рельсом

Проверку на сцепление ходовых колес с рельсом осуществляем по условию (3.13); ускорение пуска определяем по формуле (3.14); для этого по формуле (3.15) определим время пуска; по формуле (3.16) определим момент сопротивления движению крана без груза:

Определим средний пусковой момент по формуле

Где - номинальный момент двигателя, Нм;

Определим номинальный момент по формуле:

Где - мощность двигателя,кВт;

Частота вращения вала двигателя, мин - 1 ;


Условие К сц?1,2 выполняется, пробуксовка ведущих колес крана исключена.

Проверка электродвигателя по условию пуска

Полученное значение времени пуска может удовлетворять условию сцепления ходовых колес с рельсом, но не удовлетворять условию пуска электродвигателя.

Осуществим проверку двигателя по условию пуска, которое записывается:

Где [f] - допустимый коэффициент перегрузки,

[f] = 2,0; /10/;

Пусковой момент двигателя, Нм.

Условие f < [f] выполняется. По условию пуска электродвигатель подходит.

1. Выбор электродвигателя

Кинематическая схема редуктора:

1. Двигатель;

2. Редуктор;

3. Вал приводной;

4. Муфта предохранительная;

5. Муфта упругая.

Z 1 - червяк

Z 2 - червячное колесо

Определение мощности привода:

В первую очередь выбираем электродвигатель, для этого определяем мощность и частоту вращения.

Потребляемую мощность (Вт) привода (мощность на выходе) определяют по формуле:

передача электродвигатель приводной

Где Ft - окружная сила на барабане ленточного конвеера или звездочке пластинчатого конвейера (Н);

V - скорость движения цепи или ленты (м/с).

Мощность электродвигателя:

Где з общ - общий КПД привода.

з общ =з м?з ч.п з м з пп;

где з ч.п - КПД червячной передачи;

з м - КПД муфты;

з п3 ?КПД подшипников 3-го вала

з общ =0,98 0,8 0,98 0,99 = 0,76

Определяю мощность электродвигателя:

2. Определение частоты вращения приводного вала

диаметр барабана, мм.

По таблице (24.8) выбираем электродвигатель марки «аир132м8»

с частотой вращения

с мощность

крутящим моментом т мах /т=2,

3. Определение общего передаточного числа и разбивка его по ступеням

Выбираем из стандартного ряда

Принимаем

Проверка: подходит

4. Определение мощности, частоты вращения и крутящего момента для каждого вала

5. Определение допускаемых напряжений

Определяю скорость скольжения:

(Из параграфа 2.2 расчет передач) принимаем V s >=2…5 м/с II безоловянные бронзы и латуни, принимаемые при скорости

Суммарное время работы:

Суммарное число циклов перемены напряжений:

Червяк. Сталь 18 ХГТ цементированная и закаленная до НRC (56…63). Витки шлифованные и полированные. Профиль ZK.

Червячное колесо. Размеры червячной пары зависят от значения допускаемого напряжения [у] H для материала червячного колеса.

Допускаемые напряжения для расчета на прочность рабочих поверхностей:

Материал 2 группы. Бронза Бр АЖ 9-4. Отливка в землю

у в = 400 (МПа); у т = 200 (МПа);

Т.к. для изготовления зубчатого венца подходят оба материала, то выбираем более дешевый, а именно Бр АЖ 9-4.

Принимаю червяк с числом заходов Z 1 = 1, и червячное колесо с числом зубьев Z 2 = 38.

Определяю исходные допускаемые напряжения для расчёта зубьев червячного колеса на прочность рабочих поверхностей, предел изгибной выносливости материала зубьев и коэффициент безопасности:

у F о = 0,44?у т +0,14?у в = 0,44 200+0,14 400 = 144 (МПа);

S F = 1,75; К FE =0,1;

N FE = К FE N ? =0,1 34200000=3420000

Определяю максимальные допускаемые напряжения:

[у] F max = 0,8?у т = 0,8 200 = 160 (МПа).

6. Коэффициенты нагрузки

Определяю ориентировочное значение коэффициента нагрузки:

k I = k v I k в I ;

k в I = 0,5 (k в о +1) = 0,5 (1,1+1)=1,05;

k I = 1 1,05 = 1,05.

7. Определение расчётных параметров червячной передачи

Предварительное значение межосевого расстояния:

При постоянном коэффициенте нагрузки K Я =1,0 К hg =1;

Т не =К нg ЧT 2 ;

K Я =0,5 (K 0 Я +1)=0,5 (1,05+1)=1,025;

Безоловянные бронзы (материал II)

При К he при решение нагружения I равен 0,8

Принимаю а" w = 160 (мм).

Определяю осевой модуль:

Принимаю модуль m = 6,3 (мм).

Коэффициент диаметра червяка:

Принимаю q = 12,5.

Коэффициент смещения червяка:

Определяю углы подъёма витка червяка.

Делительный угол подъёма витка:

8. Проверочный расчёт червячной передачи на прочность

Коэффициент концентрации нагрузки:

где И - коэффициент деформации червяка;

Х - коэффициент, учитывающий влияние режима работы передачи на приработку зубьев червячного колеса и витков червяка.

для 5-го режима нагружения.

Коэффициент нагрузки:

k = k v k в = 1 1,007 = 1,007.

Скорость скольжения в зацеплении:

Допускаемое напряжение:

Расчётное напряжение:


200,08 (МПа) < 223,6 (МПа).

Расчётное напряжение на рабочих поверхностях зубьев не превышает допускаемого, следовательно, ранее установленные параметры можно принять за окончательные.

Коэффициент полезного действия:

Уточняю значение мощности на валу червяка:

Определяю силы в зацеплении червячной пары.

Окружная сила на колесе и осевая сила на червяке:

Окружная сила на червяке и осевая сила на колесе:

Радиальная сила:

F r = F t2 tgб = 6584 tg20 = 2396 (Н).

Напряжение изгиба в зубьях червячного колеса:

где У F = 1,45 - коэффициент, учитывающий форму зубьев червячных колёс.

18,85 (МПа) < 71,75 (МПа).

Проверка передачи на кратковременную пиковую нагрузку.

Пиковый момент на валу червячного колеса:

Пиковое контактное напряжение на рабочих поверхностях зубьев:

316,13 (МПа) < 400 (МПа).

Пиковое напряжение изгиба зубьев червячного колеса:

Проверка редуктора на нагрев.

Температура нагрева, установленного на металлической раме редуктора при естественном охлаждении:

где t o - температура окружающего воздуха (20 о С);

к т - коэффициент теплоотдачи, к т = 10;

А - площадь поверхности охлаждения корпуса редуктора (м 2);

А = 20 а 1,7 = 20 0,16 1,7 =0,88 (м 2).

56,6 (о С) < 90 (о С) = [t] раб

Так как температура нагрева редуктора при естественном охлаждении не превышает допустимую, то искусственного охлаждения на редуктор не требуется.

9. Определение геометрических размеров червячной передачи

Делительный диаметр:

d 1 = m q = 6,3 12,5 = 78,75 (мм).

Начальный диаметр:

d w1 = m (q+2x) =6,3 (12,5+2*0,15) = 80,64 (мм).

Диаметр вершин витков:

d a1 = d 1 +2m = 78,75+2 6,3 = 91,35=91 (мм).

Диаметр впадин витков:

d f1 = d 1 -2h* f m = 78,75-2 1,2 6,3 = 63,63 (мм).

Длина нарезной части червяка:

в = (11+0,06 z 2) m+3 m = (11+0,06 38) 6,3+3 6,3 = 102,56 (мм).

Принимаем в = 120 (мм).

Червячное колесо.

Делительный и начальный диаметр:

d 2 = d w2 = z 2 m = 38 6,3 = 239,4 (мм).

Диаметр вершин зубьев:

d a2 = d 2 +2 (1+x) m = 239,4+2 (1+0,15) 6,3 = 253,89= 254 (мм).

Диаметр впадин зубьев:

d f2 = d 2 - (h* f +x) 2m = 239,4 - (1,2+0,15) 26,3 = 222,39 (мм).

Ширина венца

в 2 ? 0,75 d a1 = 0,75 91 = 68,25 (мм).

Принимаем в 2 =65 (мм).

10. Определение диаметров валов

1) Диаметр быстроходного вала принимаем

Принимаем d=28 мм

Размер фасок вала.

Диаметр посадочной поверхности подшипника:

Принимаем

Принимаем

2) Диаметр тихоходного вала:

Принимаем d=45 мм

Для найденного диаметра вала выбираем значения:

Приблизительная высота буртика,

Максимальный радиус фаски подшипника,

Размер фасок вала.

Определим диаметр посадочной поверхности подшипника:

Принимаем

Диаметр буртика для упора подшипника:

Принимаем: .

10. Выбор и проверка подшипников качения по динамической грузоподъёмности

1. Для быстроходного вала редуктора выберем шариковые радиально-упорные однорядные подшипники средней серии 36307.

Для него имеем:

Диаметр внутреннего кольца,

Диаметр наружного кольца,

Ширина подшипника,

На подшипник действуют:

Осевая сила,

Радиальная сила.

Частота вращения:.

Требуемый ресурс работы:.

Коэффициент безопасности

Температурный коэффициент

Коэффициент вращения

Проверим условие:

2. Для тихоходного вала редуктора выберем шариковые радиально-упорные однорядные подшипники легкой серии.

Для него имеем:

Диаметр внутреннего кольца,

Диаметр наружного кольца,

Ширина подшипника,

Динамическая грузоподъёмность,

Статическая грузоподъёмность,

Предельная частота вращения при пластичной смазке.

На подшипник действуют:

Осевая сила,

Радиальная сила.

Частота вращения:.

Требуемый ресурс работы:.

Коэффициент безопасности

Температурный коэффициент

Коэффициент вращения

Коэффициент осевого нагружения:.

Проверим условие:

Определяем значение коэффициента радиальной динамической нагрузки x=0.45 и коэффициента осевой динамической нагрузки y=1,07.

Определяем эквивалентную радиальную динамическую нагрузку:

Рассчитаем ресурс принятого подшипника:

Что удовлетворяет требованиям.

12. Расчет приводного вала (наиболее нагруженного) вала на усталостную прочность и выносливость

Действующие нагрузки:

Радиальная сила

Крутящий момент -

Момент на барабане

Определим реакции опор в вертикальной плоскости.

Выполним проверку: ,

Следовательно вертикальные реакции найдены верно.

Определим реакции опор в горизонтальной плоскости.

получаем, что.

Проверим правильность нахождения горизонтальных реакций: , - верно.

Моменты в опасном сечении будут равны:

Расчёт производим в форме проверки коэффициента запаса прочности, значение которого можно принять. При этом должно выполняться условие, что, где - расчётный коэффициент запаса прочности, и - коэффициенты запаса по нормальным и касательным напряжениям, которые определим ниже.

Найдём результирующий изгибающий момент, как.

Определим механические характеристики материала вала (Сталь 45): - временное сопротивление (предел прочности при растяжении); и - пределы выносливости гладких образцов при симметричном цикле изгиба и кручении; - коэффициент чувствительности материала к асимметрии цикла напряжений.

Определим отношение следующих величин:

где и - эффективные коэффициенты концентрации напряжений, - коэффициент влияния абсолютных размеров поперечного сечения. Найдём значение коэффициента влияния шероховатости и коэффициент влияния поверхностного упрочнения.

Вычислим значения коэффициентов концентрации напряжений и для данного сечения вала:

Определим пределы выносливости вала в рассматриваемом сечении:

Рассчитаем осевой и полярный моменты сопротивления сечения вала:

где - расчётный диаметр вала.

Вычислим изгибное и касательное напряжение в опасном сечении по формулам:

Определим коэффициент запаса прочности по нормальным напряжениям:

Для нахождения коэффициента запаса прочности по касательным напряжениям определим следующие величины. Коэффициент влияния асимметрии цикла напряжений для данного сечения. Среднее напряжение цикла. Вычислим коэффициент запаса

Найдём расчётное значение коэффициента запаса прочности и сравним его с допускаемым: - условие выполняется.

13. Расчет шпоночных соединений

Расчёт шпоночных соединений заключается в проверке условия прочности материала шпонки на смятие.

1. Шпонка на тихоходном валу для колеса.

Принимаем шпонку 16х10х50

Условие прочности:

1. Шпонка на тихоходном валу для муфты.

Крутящий момент на валу, - диаметр вала,- ширина шпонки, - высота шпонки, - глубина паза вала, - глубина паза ступицы, - допускаемое напряжение на смятие, - предел текучести.

Определяем рабочую длину шпонки:

Принимаем шпонку 12х8х45

Условие прочности:

14. Выбор муфт

Для передачи крутящего момента от вала электродвигателя к быстроходному валу и предотвращения перекоса вала выбираем муфту.

Для привода ленточного конвейера наиболее подходит муфта упругая с торообразной оболочкой по ГОСТ 20884-82.

Муфта выбирается в зависимости от крутящего момента на тихоходном валу редуктора.

Муфты с торообразной оболочкой обладают большой крутильной, радиальной и угловой податливостью. Полумуфты устанавливают как на цилиндрические, так и на конические концы валов.

Допустимые для данного вида муфт значения смещений каждого вида (при условии, что смещения других видов близки к нулю): осевое мм, радиальное мм, угловое. Нагрузки, действующие на валы, могут быть определены по графикам из литературы .

15. Смазка червячной передачи и подшипников

Для смазывания передачи применена картерная система.

Определим окружную скорость вершин зубьев колеса:

Для тихоходной ступени, здесь - частота вращения червячного колеса, - диаметр окружности вершин червячного колеса

Рассчитаем предельно допустимый уровень погружения зубчатого колеса тихоходной ступени редуктора в масляную ванну: , здесь - диаметр окружностей вершин зубьев колеса быстроходной ступени.

Определим необходимый объём масла по формуле: , где - высота области заполнения маслом, и - соответственно длина и ширина масляной ванны.

Выберем марку масла И-Т-С-320 (ГОСТ 20799-88).

И - индустриальное,

Т - тяжелонагруженные узлы,

С - масло с антиокислителями, антикоррозионными и противоизносными присадками.

Смазывание подшипников происходит тем же маслом за счёт разбрызгивания. При сборке редуктора подшипники необходимо предварительно промаслить.

Список используемой литературы

1. П.Ф. Дунаев, О.П. Леликов, «Конструирование узлов и деталей машин», Москва, «Высшая школа», 1985 год.

2. Д.Н. Решетов, «Детали машин», Москва, «Машиностроение», 1989 год.

3. Р.И. Гжиров, «Краткий справочник конструктора», «Машиностроение», Ленинград, 1983 год.

4. Атлас конструкций «Детали машин», Москва, «Машиностроение», 1980 год.

5. Л.Я. Перель, А.А. Филатов, справочник «Подшипники качения», Москва, «Машиностроение», 1992 год.

6. А.В. Буланже, Н.В. Палочкина, Л.Д. Часовников, методические указания по расчёту зубчатых передач редукторов и коробок скоростей по курсу «Детали машин», часть 1, Москва, МГТУ им. Н.Э. Баумана, 1980 год.

7. В.Н. Иванов, В.С. Баринова, «Выбор и расчёты подшипников качения», методические указания по курсовому проектированию, Москва, МГТУ им. Н.Э. Баумана, 1981 год.

8. Е.А. Витушкина, В.И. Стрелов. Расчёт валов редукторов. МГТУ им. Н.Э. Баумана, 2005 год.

9. Атлас «конструкций узлов и деталей машин», Москва, издательство МГТУ им. Н.Э. Баумана, 2007 год.

Описание программы









Программа написана в Exsel, очень проста в пользовании и в освоении. Расчет производится по методике Чернаского .
1. Исходные данные:
1.1. Допускаемое контактное напряжение, Мпа ;
1.2. Принятое передаточное отношение, U ;
1.3. Вращающий момент на валу шестерни t1, кН*мм ;
1.4. Вращающий момент на валу колеса t2, кН*мм ;
1.5. Коэффициент;
1.6. Коэффициент ширины венца по межосевому расстоянию.

2. Стандартный окружной модуль, мм :
2.1. допустимое мин;
2.2. Допустимое макс;
2.3 Принимаемое по ГОСТ.

3. Расчет количество зубьев :
3.1. Принятое передаточное отношение, u;
3.2. Принятое межосевое расстояние, мм;
3.3. Принятый модуль зацепления;
3.4. Количество зубьев шестерни (принятое);
3.5. Количество зубьев колеса (принятое).

4. Расчет диаметров колес ;
4.1. Расчет делительных диаметров шестерни и колеса, мм;
4.2. Расчет диаметров вершин зубьев, мм.

5. Расчет прочих параметров:
5.1. Расчет ширины шестерни и колеса, мм;
5.2. Окружная скорость шестерни.

6. Проверка контактных напряжений ;
6.1. Расчет контактных напряжений, Мпа;
6.2. Сравнение с допустимым контактным напряжением.

7. Силы в зацеплении;
7.1. Расчет окружной силы, Н;
7.2. Расчет радиальной силы, Н;
7.3. Эквивалентное число зубьев;

8. Допустимое напряжение изгиба :
8.1. Выбор материала шестерни и колеса;
8.2. Расчет допустимого напряжения

9. Проверка по напряжениям изгиба;
9.1. Расчет напряжения изгиба шестерни и колеса;
9.2. Выполнения условий.

Краткая характеристика прямозубой цилиндрической передачи

Прямозубая цилиндрическая передача является самой распространенной механической передачей с непосредственным контактом. Прямозубая передача менее вынослива, чем другие подобные и менее долговечна. В такой передаче при работе нагружается только один зуб, а также создается вибрация при работе механизма. За счет этого использовать такую передачу при больших скоростях невозможно и нецелесообразно. Срок службы прямозубой цилиндрической передачи гораздо ниже, чем других зубчатых передач (косозубых, шевронные, криволинейные и т.д.). Основными преимуществами такой передачи являются легкость изготовления и отсутствие осевой силы в опорах, что снижает сложность опор редуктора, а соответственно, снижает стоимость самого редуктора.

Понравилась статья? Поделитесь с друзьями!