Способы смесеобразования в двс. Процессы смесеобразования в дизеле. Особенности смесеобразования в газовых двигателях

Топливо, используемое в двигателях с искровым зажиганием, является более летучим, чем дизельное топливо, к тому же его смешивание с воздухом до попадания в камеру сгорания занимает больше времени, чем в дизеле. В результате двигатели с искровым зажиганием работают на более однородных смесях, которые, кроме того, очень близки к стехиометрическим (λ = 1). Дизели всегда работают на обедненных смесях (λ > 1). Если коэффициент избытка воздуха топливо-воздушной смеси недостаточно велик (λ < 1), это приводит к повышенным выбросам сажи, CO и CH.

Смесеобразование однородной топливной смеси

Для качественного смесеобразования однородной топливо-воздушной смеси топливо в момент зажигания должно полностью испариться, так как только качественная газовая или газо-паровая смесь может достичь состояния однородности.

Если существуют факторы, препятствующие полному испарению топлива и приводящие к ухудшению качества смеси (например, низкая температура при холодном пуске двигателя), то следует подать дополнительную порцию топлива, чтобы обогатить топливовоздушную смесь и сделать ее, таким образом, легко воспламеняемой (обогащение смеси при холодном пуске двигателя).

Система смесеобразования, кроме обеспечения однородности смеси, также отвечает за регулирование нагрузки двигателя (дроссельное регулирование) и сведение до минимума отклонения соотношения воздух/топливо в разных цилиндрах двигателя.

Смесеобразование неоднородной топливной смеси

Целью смесеобразования неоднородной топливо воздушной смеси является обеспечение работы двигателя во всех его режимах без дроссельного регулирования мощности. Внутреннее охлаждение является побочным эффектом от использования непосредственного впрыска топлива и двигатели этого типа могут работать при более высоких значениях степени сжатия. Сочетание этих двух факторов (отсутствие дроссельного регулирования и более высокие степени сжатия) обеспечивает получение более высокого коэффициента полезного действия, чем в случаях применения однородных топливных смесей. Нагрузка двигателя при этом регулируется изменением количества впрыскиваемого топлива.

Разработки систем смесеобразования дает новый импульс к развитию «гибридного» способа смесеобразования или способа «с послойным распределением заряда по составу», возможности применения которых интенсивно исследовались, начиная с 1970 года. Определенный прорыв в этом вопросе произошел с разработкой высокоскоростных топливных систем с электромагнитными форсунками, которые позволили обеспечить гибкость в регулировании момента впрыска топливной смеси и требуемые высокие давления этого впрыска.

GDI непосредственный впрыск бензина – стал обобщенным термином, используемым для идентификации разрабатываемых во всем мире систем смесеобразования. На смесеобразование основное влияние оказывают расположение свечи зажигания и топливной форсунки, а характер циркуляции этой смеси в камере сгорания является сопутствующим фактором. Вихревое движение смеси (производимое винтовыми и тангенциальными каналами) – это в основном вращение вокруг оси параллельной оси цилиндра двигателя.

Точность размещения свечи зажигания относительно струи топлива, подаваемого форсункой, является определяющим моментом для системы с прямым впрыском топлива.

Свеча зажигания находится в условиях тяжелых нагрузок, так как она подвергается непосредственному воздействию впрыскиваемого топлива. При способе смесеобразования, когда топливо впрыскивается в выемку на днище поршня или в поток завихренного воздуха и направляется на свечу зажигания за счет вращательного движения заряда, - требования к точности расположения свечи и форсунки в этом случае не столь высоки.

Способы смесеобразования неоднородной смеси работают при избытке воздуха (управление без использования дросселя) и поэтому необходима разработка каталитических нейтрализаторов, снижающих выброс оксидов азота в отработавших газах двигателей, работающих на бедных смесях.

Подготовка смеси топлива с возду­хом в необходимых пропорциях, обеспе­чивающих наиболее эффективное горе­ние, называется смесеобразованием. Различают двигатели с внешним и внутренним смесеобразо­ванием.

К ДВС с внешним смесеобразовани­ем относятся карбюраторные и некото­рые газовые двигатели. В двигателях, работающих на бензине, смесь готовится в карбюраторе. Простейший карбюра­тор, принципиальная схема которого по­казана на рис. 42, состоит из поплавко­вой и смесительной камер. В поплавко­вой камере помещается латунный по­плавок 1 , укрепленный шарнирно на оси 3, и игольчатый клапан 2, которыми поддерживается постоянный уровень бензина. В смесительной камере распо­ложен диффузор 6, жиклер 4 сраспыли­телем 5 и дроссельная заслонка 7 . Жик­лер представляет собой пробку с калиб­рованным отверстием, рассчитанным на протекание определенного количества топлива.

Рис. 42. Принципиальная схема простейшего карбюратора

Когда поршень движется вниз и впускной клапан открыт, во впускном трубопроводе и смесительной камере со­здается разрежение, и под действием разности давлений в поплавковой и сме­сительной камерах из распылителя вы­текает бензин. Одновременно через сме­сительную камеру проходит поток воз­духа, скорость которого в суженной части диффузора (там, куда выходит ко­нец распылителя) достигает 50-150 м/с. Бензин мелко распыливается в струе воз­духа и, постепенно испаряясь, образует горючую смесь, которая по впускному трубопроводу поступает в цилиндр. Ка­чество горючей смеси зависит от соотно­шения количеств бензина и воздуха. Го­рючая смесь может быть нормальной (15кг воздуха на 1 кг бензина), бедной (более 17 кг/кг) и богатой (менее 13 кг/кг). Количество и качество горючей сме­си, а следовательно, мощность и число оборотов двигателя регулируются дрос­сельной заслонкой и рядом специальных приспособлений, которые предусматри­ваются в сложных многожиклерных кар­бюраторах.

К ДВС с внутренним смесеобразова­нием относятся дизельные двигатели. На процессы смесеобразования, происходя­щие непосредственно в цилиндре, отво­дится незначительное время - от 0,05 до 0,001 с; это в 20-30 раз меньше времени внешнего смесеобразования в карбюра­торных двигателях. Подача топлива в цилиндр дизеля, последующее распыливание и частичное распределение по объему камеры сгорания производятся топливоподающей аппаратурой - насосом и форсункой. Современные дизели имеют форсунки, где число сопловых от­верстий диаметром 0,25-1 мм доходит до десяти.

Бескомпрессорные дизели бывают с неразделенной и разделенной камерами сгорания. Тонкость распыливания и дальнобойность факелов в неразделен­ных камерах обеспечиваются благодаря высокому давлению впрыска топлива (60-100 МПа). В разделенных камерах сгорания происходит более качественное смесеобразование, что позволило су­щественно снизить давление впрыска топлива (8-13 МПа), а также использо­вать более дешевые сорта топлива.


В газовых двигателях газообразное топливо и воздух по соображениям безо­пасности подаются по отдельным трубо­проводам. Дальнейшее смесеобразование осуществляется или в специальном сме­сителе до их поступления в цилиндр (за­полнение цилиндра в начале хода сжа­тия производится готовой смесью), или в самом цилиндре, куда они подаются раздельно. В последнем случае вначале цилиндр заполняется воздухом и затем по ходу сжатия в него через специальный клапан подается газ под давлением 0,2- 0,35 МПа. Наибольшее распространение получили смесители второго типа. Вос­пламенение газовоздушной смеси осуще­ствляется электрической искрой или раскаленным запальным шаром - кало­ризатором.

В соответствии с различными при­нципами смесеобразования различаются и требования, которые предъявляют кар­бюраторные двигатели и дизели к при­меняемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензи­ны. Основной проблемой, препятствую­щей повышению степени сжатия в таких двигателях сверх уже достигнутых зна­чений, является детонация. Упрощая яв­ление, можно сказать, что это - пре­ждевременное самовоспламенение горю­чей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько на­поминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добав­ляют в топливо антидетонаторы - ве­щества, пары которых уменьшают ско­рость реакции. Наиболее распространен­ный антидетонатор - тетраэтилсвинца Pb (C 2 H 5) 4 - сильнейший яд, действую­щий на мозг человека, поэтому при обра­щении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются с продуктами сгорания в атмосферу, за­грязняя и ее, и окружающую среду (с травой газонов свинец может попасть в пищу скоту, оттуда - в молоко и т. д.). Поэтому потребление этого экологически опасного антидетонатора должно быть ограничено, и в ряде городов меры в этом отношении принимаются.

Для определения склонности данного топлива к детонации устанавливают ре­жим, при котором оно (естественно, в смеси с воздухом) начинает детониро­вать в специальном двигателе со строго заданными параметрами. Затем на этом же режиме подбирают состав смеси изо -октана C 3 H 18 (труднодетонирующего топлива) с н -гептаном C 7 H 16 (легкодето­нирующим топливом), при котором тоже возникает детонация. Процентное содер­жание изооктана в этой смеси называет­ся октановым числом данного топлива и является важнейшей характеристикой топлив для карбюраторных двигателей.

Автомобильные бензины маркируют по октановому числу (АИ-93, А-76 и т.п.). Буква А обозначает, что бензин автомобильный, И - октановое число, определенное специальными испы­таниями, а цифра после букв - само ок­тановое число. Чем оно выше, тем мень­ше склонность бензина к детонации и тем выше допустимая степень сжатия, а зна­чит, и экономичность двигателя.

У авиационных двигателей степень сжатия выше, поэтому октановое число авиационных бензинов должно быть не меньше 98,6. Кроме того, авиационные бензины должны более легко испаряться (иметь низкую температуру «кипения») в связи с низкими температурами на больших высотах. В дизелях жидкое топ­ливо испаряется в процессе горения при высокой температуре, поэтому испаряе­мость для них роли не играет. Однако при рабочей температуре (температуре окружающей среды) топливо должно быть достаточно жидкотекучим, т. е. иметь достаточно низкую вязкость. От этого зависит безотказная подача топлива к насосу и качество распыления его форсункой. Поэтому для дизельного топлива важна прежде всего вязкость, а также содержание серы (это связано с экологией). В маркировке дизельного топлива ДА, ДЗ, ДЛ и ДС буква Д обоз­начает - дизельное топливо, следующая буква А - арктическая (температура окружающего воздуха, при которой при­меняется это топливо t о = -30 °С), З - зимнее (t 0 = 0 ÷ -30 °С), Л - летнее (t о > 0°С) и С - специальное, получае­мое из малосернистых нефтей (t 0 >0 o C).

Вопросы для самопроверки

1. Что называется поршневым двигателем внутреннего сгорания (ДВС)?

2. Объясните принцип работы поршневого двигателя внутреннего сгорания?

3. Принцип действия простейшего карбюратора?

  • Лекция 2: топлива и продукты сгорания.
  • 1. Виды топлив применяемых в теплоэнергетических установках и их краткая характеристика.
  • 2. Физико-химические основы процесса сгорания топливо-воздушных смесей в различных теплоэнергетических установках.
  • 3. Продукты сгорания и их влияние на окружающую среду. Способы обезвреживания продуктов сгорания.
  • Токсичные вещества, содержащиеся в отработавших газах
  • Контрольные вопросы.
  • Лекция 3: рабочий процесс поршневой энергетической установки транспортной техники
  • 1. Основные понятия и определения. Цикл, такты и фазы газораспределения поршневых двс. Индикаторные диаграммы.
  • 2. Процессы газообмена. Характеристика и параметры процессов газообмена.
  • 3. Влияние различных факторов на процессы газообмена. Развития систем газообмена.
  • 4. Процесс сжатия
  • Значения параметров процесса сжатия
  • Лекция 4: процесс смесеобразования, воспламенение и сгорания топлива в двигателях с искровым зажиганием.
  • 1. Процесс смесеобразование в двигателях с искровым зажиганием.
  • 2. Воспламенение и сгорание топлива.
  • 3. Нарушения сгорания.
  • 4. Влияние различных факторов на процесс сгорания.
  • 1. Впрыскивание и распыливание топлива.
  • 2. Смесеобразование в дизеле.
  • 3. Процессы сгорания и тепловыделения.
  • 4. Процесс расширения
  • Значения параметров процесса расширения
  • Контрольные вопросы.
  • Лекция 6: индикаторные и эффективные показатели
  • 1. Индикаторные показатели. Влияние различных факторов на индикаторные показатели двигателя с искровым зажиганием и дизеля.
  • Влияние различных факторов на индикаторные показатели дви­гателя с искровым зажиганием.
  • Pис. 6.1. Зависимости индикаторного кпд от коэффициента избытка воздуха для двигателя с искровым зажиганием (a) и дизеля (б)
  • Влияние различных факторов на индикаторные показатели дизеля.
  • 2. Механические потери в двигателе
  • 3. Эффективные показатели двигателя
  • Значения индикаторных и эффективных показателей
  • 4. Тепловой баланс двигателя
  • Влияние различных факторов на тепловой баланс двигателя
  • Контрольные вопросы.
  • Лекция 7. Характеристики и способы повышения мощности энергетических установок.
  • 1. Характеристики энергетических установок.
  • 2. Виды характеристик поршневых двс.
  • 3. Способы повышения мощности двигателя
  • Контрольные вопросы
  • 1. Кинематические характеристики движения.
  • 2. Динамика кривошипно-шатунного механизма
  • 3. Влияние конструктивных соотношений кривошипно-шатунного механизма на параметры двигателя
  • Контрольные вопросы.
  • Лекция 9: испытание энергетических установок.
  • 1. Цели и виды испытаний.
  • 2. Методы и приборы для проведения испытаний энергоустановок.
  • 3. Техника безопасности при испытаниях.
  • Контрольные вопросы.
  • Лекция 10: кривошипно-шатунный механизм.
  • 1. Классификация и назначение, компоновочные и кинематические схемы, конструкция элементов корпусной и цилиндровой группы.
  • 2. Конструкция элементов поршневой группы.
  • 3. Конструкция элементов шатунной группы.
  • 4. Конструкция коленчатого вала
  • Контрольные вопросы.
  • Лекция 11: механизм газораспределения
  • 1. Назначение, основные конструкционные решения и схемы грм.
  • 2. Конструкция элементы механизма газораспределения
  • Контрольные вопросы.
  • Лекция №12. Смазочная система и система охлаждения
  • 1. Основные функции и работа смазочной системы.
  • 2. Основные агрегаты смазочной системы
  • 3. Назначение и основные требования системе охлаждения
  • 4. Агрегаты системы охлаждения и регулирование температу­ры охлаждающей жидкости
  • 12.2. Схема системы охлаждения
  • Контрольные вопросы.
  • Лекция 13. Система питания топливом и воздухом. Система питания двигателя
  • 1. Назначение, основные требования и конструктивные особенности системы питания двигателей с искровым зажиганием
  • 2. Назначение, основные требования и конструктивные особенности приборов системы питания дизелей
  • 3. Требования, предъявляемые к системам очистки воздуха, конструктивные особенности приборов подачи воздуха.
  • Контрольные вопросы
  • Лекция №14. Системы пуска энергетических установок.
  • 1. Способы пуска двигателя
  • 2. Средства, облегчающие пуск двигателя
  • Контрольные вопросы
  • Лекция 15. Работа энергетических установок в эксплуатации
  • 1. Работа энергетических установок в эксплуатации на неустановившихся режимах.
  • 2. Технико-экономические показатели работы энергетических установок в эксплуатации.
  • Литература
  • 1. Процесс смесеобразование в двигателях с искровым зажиганием.

    Комплекс взаимосвязанных процессов дози­рования топлива и воздуха, распыливания и испарения топлива, а также перемешивания топлива с воздухом называется смесеоб­разованием. От состава и качества топливовоздушной смеси, полу­ченной при смесеобразовании, зависит эффективность процесса сгорания.

    В четырехтактных двигателях обычно организуют внешнее сме­сеобразование , которое начинается дозированием топлива и воз­духа в форсунке, карбюраторе или в смесителе (газовый двига­тель), продолжается во впускном тракте и завершается в цилиндре двигателя.

    Различают два типа впрыскивания топлива : центральное - впрыс­кивание топлива во впускной трубопровод и распределенное - впрыскивание во впускные каналы головки цилиндров.

    Распыливание топлива при центральном впрыскивании и в кар­бюраторах начинается в период, когда струя топлива после ее выхода из отверстия форсунки или распылителя под воздействи­ем сил аэродинамического сопротивления и за счет высокой ки­нетической энергии воздуха распадается на пленки и капли раз­личных диаметров. По мере движения капли дробятся на более мелкие. С повышением мелкости распыливания растет суммарная поверхность капель, что приводит к более быстрому превраще­нию топлива в пар.

    С увеличением скорости воздуха мелкость и однородность рас­пыливания улучшаются, а при большой вязкости и поверхност­ном натяжении топлива - ухудшаются. Так, при пуске карбюра­торного двигателя распыливания топлива практически нет.

    При впрыскивании бензина качество распыливания зависит от давления впрыскивания, формы распыливающих отверстий фор­сунки и скорости течения топлива в них.

    В системах впрыскивания наибольшее применение получили электромагнитные форсунки, к которым топливо подводится под давлением 0,15...0,4 МПа для получения капель требуемого раз­мера.

    Распыливание пленки и капель топлива продолжается при дви­жении топливовоздушной смеси через сечения между впускным клапаном и его седлом, а на частичных нагрузках - в щели, обра­зуемой прикрытой дроссельной заслонкой.

    Образование и движение пленки топлива возникает в каналах и трубопроводах впускной системы. При движении топлива из-за взаимодействия с потоком воздуха и гравитации оно частично оседает на стенках впускного трубопровода и образует топливную пленку. Из-за действия сил поверхностного натяжения, сцепле­ния со стенкой, тяжести и других сил скорость движения пленки топлива в несколько десятков раз меньше скорости потока смеси. С пленки потоком воздуха могут срываться капельки топлива (вто­ричное распыливание).

    При впрыскивании бензина обычно в пленку попадает 60...80 % топлива. Ее количество зависит от места установки форсунки, даль­нобойности струи, мелкости распыливания, а в случае распреде­ленного впрыскивания в каждый цилиндр - и от момента его начала.

    В карбюраторных двигателях на режимах полных нагрузок и малой частоты вращения до 25% от общего расхода топлива по­падает в пленку на выходе из впускного трубопровода. Это связа­но с небольшой скоростью потока воздуха и недостаточной мел­костью распыливания топлива. При прикрытии дроссельной зас­лонки количество пленки во впускном трубопроводе меньше из-за вторичного распыливания топлива около заслонки.

    Испарение топлива необходимо для получения однородной смеси топлива с воздухом и организации эффективного процесса сгорания. Во впускном канале, до поступления в цилиндр, смесь является двух­фазной. Топливо в смеси находится в газовой и жидкой фазах.

    При центральном впрыскивании и карбюрации для испарения пленки впускной трубопровод специально подогревают жидко­стью из системы охлаждения или отработавшими газами. В зависи­мости от конструкции впускного тракта и режима работы на вы­ходе из впускного трубопровода в горючей смеси топливо на 60...95 % находится в виде паров.

    Процесс испарения топлива продолжается и в цилиндре во время тактов впуска и сжатия, а к началу сгорания топливо испа­ряется практически полностью.

    При распределенном впрыскивании топлива на тарелку впускно­го клапана и работе двигателя на полной нагрузке испаряется 30...50 % цикловой дозы топлива до поступления в цилиндр. При впрыскивании топлива на стенки впускного канала доля испа­рившегося топлива возрастает до 50...70 % благодаря увеличению времени на его испарение. Подогрев впускного трубопровода в этом случае не нужен.

    Условия для испарения бензина на режимах холодного пуска ухудшаются, а доля испарившегося топлива перед поступлением в цилиндр при этом составляет лишь 5... 10%.

    Неравномерность состава смеси , поступающей в разные цилиндры двигателя, при центральном впрыскивании и карбюрации опреде­ляется разной геометрией и длиной каналов (неодинаковым сопро­тивлением ветвей впускного тракта), разницей скоростей движения воздуха и паров, капель и, главным образом, пленки топлива.

    При неудачной конструкции впускного тракта степень равно­мерности состава смеси может достигать ±20%, что существенно снижает экономичность и мощность двигателя.

    Неравномерность состава смеси зависит также от режима ра­боты двигателя. При центральном впрыскивании и в карбюратор­ном двигателе с ростом частоты вращения улучшаются распыли­вание и испарение топлива, поэтому неравномерность состава смеси снижается. Смесеобразование улучшается при уменьшении нагрузки двигателя.

    При распределенном впрыскивании неравномерность состава смеси по цилиндрам зависит от идентичности работы форсунок. Наибольшая неравномерность возможна на режиме холостого хода при малых цикловых дозах.

    Организация внешнего смесеобразования газовых автомобиль­ных двигателей подобна карбюраторным двигателям. Топливо в воздушный поток вводится в газообразном состоянии. Качество топливовоздушной смеси при внешнем смесеобразовании зави­сит от температуры кипения и коэффициента диффузии газа. При этом обеспечивается формирование практически однородной сме­си, а ее распределение по цилиндрам равномернее, чем в карбю­раторных двигателях.

    Смесеобразованием называется приготовление горючей смеси для подготовки топлива к сжиганию в цилиндре ДВС. Процесс горения длится очень короткое время, например, в МОД оно составляет 0,05-0,1 секунды, в ВОД - 0,003-0,015 секунды. Для того, чтобы обеспечить полное сгорание топлива за этот короткий промежуток времени необходимо приготовить рабочую смесь, состоящую из мелко распыленного жидкого топлива (дизельные ДВС) или паров топлива (карбюраторные ДВС) перемешанных с воздухом. Для обеспечения высокого качества смеси, которое оценивается коэффициентом иэбытка воздуха (α), топливо должно быть мелко распылено и равномерно распределено по всему объёму камеры сгорания. Камера должна иметь конфигурацию, соответствующую форме и дальнобойности факела от форсунки.

    Образование топливного факела характеризуется дальнобойностью, углом конуса распыливания и размером капель топлива. Для лучшего использования факел образует капельный туман в виде расходящегося конуса. Этот туман должен проникать во все части камеры сгорания, но не касаться поверхностей деталей ЦПГ. Капли топлива, попадающие на стенки цилиндровой втулки, растворяют масляную плёнку, плохо перемешиваются с воздухом и сгорают не полностью, образуя сажу и нагар. По способу смесеобразования двигатели различают на:

    1). Однокамерные - струйное смесеобразование с непосредственным впрыском топлива, применяется в ДВС большой и средней мощности, имеющих различные формы головок поршней. У них маленькая поверхность теплопередачи и поэтому небольшие тепловые потери. Это даёт большую экономичность и хорошие пусковые качества.

    Недостатки: высокое давление впрыска топлива (до 1200 кг/см 2), усложняющее топливную аппаратуру, жёсткость работы и повышенная шумность двигателя.

    2). Предкамерное – такое смесеобразование применяется на ВОД с диаметром цилиндра D=180-200 мм. В крышке цилиндров размещена предкамера, объём которой составляет 20-40% общего объёма камеры сгорания. Предкамера соединена с основной камерой каналами, число которых может быть от 1 до 12. Часть топлива сгорает в предкамере, поэтому отпадает необходимость подачи его с большим давлением. Такие ДВС менее чувствительны к качеству топлива.

    Недостатки: повышенный удельный расход топлива, трудность запуска в холодное время года, значительные тепловые потери из-за большой поверхности охлаждения, малая экономичность двигателя.

    3). Вихрекамерное - применяется также на ВОД в виде сферической или цилиндрической камеры сгорания, расположенной в крышке цилиндров. Её объём составляет 50-80%. Она сообщается с основной камерой сгорания каналом большого сечения. Воздух, поступая в вихревую камеру во время такта сжатия, получает вращательное движение. Благодаря этому, впрыскивющееся под давлением 100-140кг/см 2 топливо, хорошо перемешивается с воздухом и сгорает. Вместе с горячими продуктами сгорания часть его перетекает в основную камеру, создавая вихревые потоки, где сгорает полностью.


    Преимущества: снижение α, бездымный выхлоп, низкое давление впрыска, применение однодырчатых распылителей форсунок, что удешевляет изготовление топливной аппаратуры.

    Недостатки: сложность конструкции цилиндровой крышки, трудность запуска холодного двигателя и необходимость применения спирали накаливания для подогрева воздуха в камере.

    4). Плёночное - камера сгорания расположена в головке поршня и непосредственно соединена с надпоршневым пространством. Диаметр камеры составляет ≈ 0,3-0,5D цилиндровой втулки. Головка поршня охлаждается маслом, поэтому температура её наружной поверхности не более 200-400°C. Топливо впрыскивается под давлением ≈ 150 кг/см 2 через многодырчатую форсунку. Примерно 95% топлива попадает на внутреннюю поверхность камеры поршня в виде тончайшего слоя, остальное распыливается в объёме камеры сгорания. Вначале происходит самовоспламенение распыленного топлива, затем от горящего факела воспламеняются его пары. Интенсивное перемешивание паров топлива с воздухом происходит за счёт вихреобразования. ДВС с таким смесеобразованием являются многотопливными т.е. могут использовать легкие и тяжелые сорта топлива.

    Процесс смесеобразования осуществляется в результате распыливания топлива с помощью форсунки высокого давления, направленного вихревого движения заряда в камере, а иногда также регулирования температуры деталей, на которых происходит испарение топлива.

    Типы смесеобразования.

    В зависимости от характера впрыска топлива различают объемный, пленочный и объемно-пленочный (смешанный) типы смесеобразования, которые осуществляются в неразделенных камерах сгорания.

    Объемное смесеобразование - впрыск топлива производится в воздушную среду. При этом методе попадание топлива на стенки камеры сгорания не допускается. Такое смесеобразование имеет место в 2-тактных двигателях.

    Пленочное смесеобразование - основная часть топлива попадает на стенки камеры и растекается в виде тонкой жидкой пленки. В этом случае для хорошего воспламенения в сжатый воздух впрыскивается около 5% топлива, а остальная его часть - на стенки.

    - часть топлива впрыскивается в воздушную среду, а часть на стенки.

    Один из способов объемно-пленочного смесеобразования предложен Мойрером и разработан фирмойMAN(ФРГ). Он характеризуется следующими особенностями:

    Для лучшего воспламенения и сгорания в сжатый воздух впрыскивается 5% топлива, а основная масса топлива (95%) наносится на стенки в виде пленки толщиной 10-15мк;

    Впрыснутое в нагретый воздух топливо самовоспламеняется и затем поджигает горючую смесь, образующуюся в процессе испарения пленки со стенок цилиндра и перемешивания паров топлива с воздухом;

    Топливо с поверхности стенок в начале сгорания испаряется сравнительно медленно и горение начинается медленно. Затем процессы ускоряются, при этом поршень идет к НМТ и поэтому двигатель работает мягко и бесшумно;

    Такой процесс сгорания позволяет использовать в двигателе различные топлива: бензин, керосин, лигроин, соляровое масло и др.

    Камера сгорания имеет развитые вытеснители, создающие интенсивное вихревое движение воздушного заряда, что способствует хорошему испарению и смесеобразованию.

    Двигатели с подобным процессом называются многотопливными двигателями.

    Смесеобразование в разделенных камерах сгорания

    Для улучшения смесеобразования применяют разделенные камеры сгорания. Различают два типа смесеобразования: предкамерное и вихрекамерное.

    Предкамерное смесеобразование характеризуется следующими способами:

    1. Камера сгорания разделена на две части: предкамеру объемом (0,25-0,4)V с и главную камеру, которые соединены между собой узкими каналами, препятствующими быстрому перетеканию газов из предкамеры в цилиндр. В результате этого максимальные давления сгорания невелики и двигатель работает очень мягко.

    2. В процессе сжатия в предкамере создается беспорядочное турбулентное движение воздуха за счет перетекания его с большой скоростью (200-300 м/с) через узкие каналы из цилиндра. В этом случае смесеобразование определяется интенсивностью движения потока воздуха в предкамере, а не качеством распыливания топлива, благодаря этому двигатель мало чувствителен к сорту топлива и имеет пониженное давление впрыска (10-13МПа).

    3. Наличие узких каналов и развитой поверхности камеры сгорания приводит к большим потерям тепла через стенки предкамеры и потерь энергии при перетекании газов в предкамеру и обратно, что затрудняет пуск холодного двигателя и ухудшает его экономичность.

    Для облегчения пуска повышают степень сжатия до 20-21, а в предкамере устанавливают калильные свечи, которые включаются при пуске.

    Вихрекамерное смесеобразование в отличие от предкамерного характеризуется:

    1. Большим объемом вихревой камеры (0,5-0,8)V с, в которой в процессе сжатия создается организованное вращательное движение воздуха.

    2. Большим проходным сечением и, следовательно, большим давлением сгорания в цилиндре из-за быстрого перетекания сгоревших газов из вихревой камеры в основную.

    3. Благодаря большим проходным сечениям потери энергии заряда при перетекании относительно невелики. Для надежного пуска вихрекамерные двигатели имеют = 17-20.

    Понравилась статья? Поделитесь с друзьями!