Диаграмма работы двигателя внутреннего сгорания. Рабочий цикл и индикаторная программа двигателя. Эффективная мощность ДВС

Под индицированием понимается снятие с последующей обработкой индикаторных диаграмм, представляющих собой графическую зави-симость развиваемого в рабочем цилиндре давления в функции хода поршня S или пропорционального ему объема цилиндра V s (см. рис. 1 и 2).

Индикаторы «Майгак»

Диаграммы снимаются с каждого рабочего цилиндра с помощью спе-циального прибора — индикатора поршневого типа «Майгак». Наличие диаграммы позволяет определить важные для анализа рабочего процесса параметры Р i , Р с и Р макс. Диаграмма на рис. 1 типична для двигателей, при эксплуатации которых главная задача состояла в снижении уровня и содержания в выхлопе окислов азота. Для этого, как уже ранее отмечалось, осуществляется более поздний впрыск топлива и сгорание происходит с меньшим ростом давления и температур в камере сгорания.

Рис. 1 Индикаторная диаграмма двигателя МАН-БВ KL-MC

Если же главная цель состоит в повышении экономичности двигателя, то сгорание организуется с более ранней подачей топлива и, соответс-твенно, большим ростом давлений. При наличии электронной системы управления подачей топлива такая перестройка легко осуществляется.

На диаграмме рис. 2 четко видны два горба — сжатие и затем сгора-ние. Такой характер достигнут за счет еще более поздней подачи топлива. На рисунках приведены два вида диаграмм — свернутая, по которой оп-ределяется среднее индикаторное давление, и развернутая, позволяющая визуально оценить характер развития процессов. Подобные диаграммы можно получить при использовании поршневого индикатора «Майгак», для которого необходимо наличие , позволяющего


Рис. 2 Индикаторная диаграмма двигателя МАН-БВ SMC

синхронизировать вращение барабана индикатора с движением поршня индицируемого цилиндра. Подключение привода позволяет получить свернутую диаграмму, планиметрированием площади которой определя-ется среднее индикаторное давление , представляющее собой некоторое среднее условное давление, действующее на поршень и совершающее в течение одного хода работу, равную работе газов за цикл.

P i = F инд.д / L m, где F инд.д — площадь диаграммы, пропорциональная работе газов за цикл, L — длина диаграммы, пропорциональная величине рабочего объема цилиндра, m — масштабный множитель, зависящий от жесткости пружины поршня индикатора.

По P i подсчитывается индикаторная мощность цилиндра N i = C P i n , где η — число оборотов 1/мин и С — постоянная цилиндра. Эффективная мощность N e = N i η мех кВт, η мех -механический кпд двигателя, который можно найти в документации по двигателю.

Перед тем, как приступить к индицированию, проверьте состояние индикаторного крана и привода. Возможные ошибки в их состоянии проиллюстрированы на рис. 3.

Гребенка (рис. 2) снимается при ручном управлении шнуром, отсоединенным от индикаторного привода. Наличие гребенки поз-воляет оценить стабильность циклов и более точно замерить Р макс . Если пики одинаковы, то это свидетельствует о стабильной работе топливной аппаратуры.

Важно отметить, что поршневые индикаторы обладают малой часто-той собственных колебаний. Последняя должна,как минимум, в 30 раз превышать число оборотов двигателя. В противном случае индикатор-ные диаграммы будут сниматься с искажениями. Поэтому применение


Рис. 3 Ошибки в настройке привода индикатора

поршневых индикаторов ограничивается 300 об/мин. Индикаторы со стержневой пружиной обладают большей частотой собственных коле-баний и их применение допускается в двигателях с частотой вращения до 500-700 об/мин. Однако, в таких двигателях индикаторный привод отсутствует и приходится ограничиваться снятием гребенок или раз-вернутых диаграмм, по которым среднее не определить.

Второе ограничение касается величины максимального давления в цилиндрах. В современных двигателях с высоким уровнем форсировки оно достигает 15-18 МПа. При используемом в индикаторе «Майгак» пор-шне для дизелей диаметром 9,06 мм максимально жесткая пружина огра-ничивает Р макс = 15 МПа. При такой пружине точность измерения весьма низкая, так как масштаб пружины составляет 0,3 мм на 0,1 МПа.

Существенно также, что работа по индицированию довольно утоми-тельна и трудоемка, а точность результатов невысока. Малая точность обусловливается ошибками, возникающими из-за несовершенства инди-каторного привода и неточности обработки индикаторных диаграмм при их ручном планиметрировании. Для сведения — неточность индикатор-ного привода, выражающаяся в смещении ВМТ привода от ее истинного положения на 1°, приводит к ошибке примерно в 10%.

По результатам исследований строят графики зависимости дебита скважины от забойного давления Р заб или от депрессии (Р пл -Р заб), называемые индикаторными диаграммами (ИД).

Индикаторные диаграммы (ИД) добывающих скважин располагаются ниже оси абсцисс, а водонагнетательных - выше этой оси.

Обе индикаторные диаграммы (Q = f(Р заб) и Q = f()) строят в тех случаях, когда скважины эксплуатируются при сравнительно больших депрессиях (более 0,5…1,0 МПа). Ошибки измерений при этом обычно не приводят к большому разбросу точек при построении ИД в координатах Q = f(Р заб) (тем более для Q = f()).

При малых депрессиях (порядка 0,2…0,3 МПа) разброс точек может быть настолько большим, что индикаторную диаграмму в координатах Q = f(Р заб) построить не удается. В этих случаях на каждом режиме следует измерять и Р заб, и Р пл, а индикаторную диаграмму строить в координатах Q = f(). Депрессия, определяемая на каждом режиме, имеет меньшую относительную ошибку, чем Р заб, т.к. при измерениях за один спуск прибора абсолютные ошибки Р пл и Р заб примерно одинаковы и поэтому на разность =Р пл -Р заб почти не влияют. Либо используют не глубинные манометры, а глубинные дифференциальные манометры.

Если процесс фильтрации жидкости в пласте подчиняется линейному закону, т. е. индикаторная линия имеет вид прямой, зависимость дебита гидродинамически совершенной скважины от депрессии на забое описывается формулой Дюпюи

где Q -- объемный дебит скважины в пластовых условиях; Р пл -- среднее давление на круговом контуре радиуса R к.

Рис. 5.2. Индикаторная диаграмма Q=f(Р заб)

Считается, что давление на забое через некоторое время после остановки скважины становится примерно равным среднему пластовому давлению, установившемуся на круговом контуре с радиусом, равным половине среднего расстояния между исследуемой скважиной и соседними, ее окружающими.

Q=f(Р заб ) предназначена для оценки величины пластового давления, которое можно определить путем продолжения индикаторной линии до пересечения с осью ординат (Рис. 5.2). Это соответствует нулевому дебиту, т. е. скважина не работает и Р заб Р пл =Р к.

Индикаторная диаграмма Q=f() строит-ся для определения коэффициента продуктивности скважин К.

В пределах справедливости линейного зако-на фильтрации жидкости, т. е. при линейной зависимости Q=f(),коэффициент продуктивности является величиной постоянной иРис. 5.3 Индикаторная диаграмма Q = f()

численно равен тангенсу угла наклона индикаторной линии к оси дебитов (оси абсцисс). По коэффициенту продуктивности скважин, определенному методом установившихся отборов, можно вычислить также другие параметры пласта.

Откуда коэффициент гидропроводности

И проницаемость пласта в призабойной зоне

Приведенные выше формулы справедливы для случая исследования гидродинамически совершенной скважины (вскрывшей пласт на всю его толщину и имеющей открыты забой) и измеряемые величны (дебит, динамическая вязкость и др.) приведены к пластовым условиям.

Реальные индикаторные диаграммы не всегда получаются прямолинейными (Рис 5.4). Искривление индикаторной диаграммы характеризует характер фильтрации жидкости в призабойной зоне пласта.

Рис. 5.4. Индикаторные кривые при фильтрации по пласту однофазной жидкости: 1 - установившаяся фильтрация по линейному закону Дарси; 2- неустановившаяся фильтрация или фильтрация с нарушением линейного закона Дарси при больших Q ; 3 - нелинейный закон фильтрации.

Искривление индикаторной линии в сторону оси P (рис. 5.4, кривая 2) означает увеличение фильтрационных сопротивлений по сравнению со случаем фильтрации по закону Дарси. Это объясняется тремя причинами:

1. Превышение скорости фильтрации в ПЗП критических скоростей при котрых линейный закон Дарси нарушается (V>V кр)

2. Образованием вокруг скважины области двухфазной (нефть+газ) фильтрации при Р заб <Р нас. Чем меньше Р заб, тем больше радиус этой области.

3. Изменения проницаемости и раскрытости микротрещин в породе при изменении внутрипластового давления вследствие изменения Рзаб.

Искривление ИД в сторону оси Q (рис. 5.4, кривая 3) объясняется двумя причинами:

1) некачественные измерения при проведении исследований;

2)неодновременным вступлением в работу отдельных прослоев или пропластков.

Продуктивные пласты, как правило, неоднородны. Глубинные дебитограммы для них:

Площадь заштрихованного прямоугольника прямо пропорциональна дебиту каждого пропластка. С уменьшением Р заб (т.е. с ростом P=Р пл -Р заб) растет работающая толщина пласта (h эф.), откуда по формуле Дюпюи растет Q (рис 5.4, кривая 3). Ошибка в определении пластового давления может привести к искривлению начального участка индикаторной диаграммы, построенной в координатах Q=f().

Рис. 5.5. Индикаторная диаграмма: 2 - замеренное пластовое давление соответствует фактическому; 1, 3 - замеренное пластовое давление соответственно завышено и занижено против фактического.

Очевидно, если замеренное пластовое давление окажется выше фактического, то построенная индикаторная диаграмма (рис. 5.5, кривая 1) будет располагаться ниже фактической. При этом фактические точки будут располагаться параллельно, но выше построенных по замеренным значениям. Экстраполяция в начало координат создает видимость искривления индикаторной кривой к оси депрессии.

Если замеренное пластовое давление окажется ниже фактического, то индикаторная диаграмма в своем начальном участке при экстраполяции его в начало координат может стать выпуклой к оси дебитов (рис. 5.5, кривая 3 ). Это может привести исследователя к выводу, что вся кривая имеет выпуклый к оси дебитов вид. Для случая искривления индикаторной линии в сторону оси депрессий (Рис. 5.6, а) при нарушении линейного закона фильтрации скорость фильтрации вблизи перфорационных отверстий становится настолько большой, что числа Рейнольдса превышают критические. Уравнение индикаторной линии записывают в виде:

а саму индикаторную диаграмму индикаторную линию для ее спрямления изображают в координатах

где а и b - постоянные численные коэффициенты.

Получим индикаторную прямую в координатах Др/Q=f(Q) отсекающую на оси ординат отрезок, равный а , с тангенсом угла наклона к оси Q , равным b (рис. 5.6, б). В этом случае коэффициент продуктивности К является величиной переменной, зависящей от дебита скважины.

Рис. 5.6 Индикаторная диаграмма при нелинейном законе фильтрации: а - ИД в координатах Др - Q; б - ИД в координатах Др /Q - Q.

Отрезок а , отсекаемый на оси ординат может быть выражен как

где, (с 1 и с 2 - фильтрационные сопротивления, обусловленные несовершенст-вом скважины по степени и характеру вскрытия).

По отрезку а , отсекаемому на оси Др/Q , находятся гидропроводность и проницаемость пласта

Коэффициент b зависит от конструкции забоя скважины.

Построение индикаторных диаграмм

Индикаторные диаграммы строятся в координатах p-V .

Построение индикаторной диаграммы двигателя внутреннего сгорания производится на основании теплового расчета.

В начале построения на оси абсцисс откладывают отрезок АВ, соответствующий рабочему объему цилиндра, а по величине равный ходу поршня в масштабе, который в зависимости от величины хода поршня проектируемого двигателя может быть принят 1:1, 1,5:1 или 2:1.

Отрезок ОА, соответствующий объему камеры сгорания,

определяется из соотношения:

Отрезок z"z для дизелей (рис. 3.4) определяется по уравнению

Z,Z=OA(p-1)=8(1,66-1)=5.28мм, (3.11)

давлений = 0,02; 0,025; 0,04; 0,05; 0,07; 0,10 МПа в мм так, чтобы

получить высоту диаграммы, равную 1,2…1,7 ее основания.

Затем по данным теплового расчета на диаграмме откладывают в

выбранном масштабе величины давлений в характерных точках а, с, z", z,

b, r. Точка z для бензинового двигателя соответствует pzT .

Индикаторная диаграмма четырехтактного дизельного двигателя

По наиболее распространенному графическому методу Брауэра политропы сжатия и расширения строят следующим образом.

Из начала координат проводят луч ОК под произвольным углом к оси абсцисс (рекомендуется приинмать = 15…20°). Далее из начала координат проводят лучи ОД и ОЕ под определенными углами и к оси ординат. Эти углы определяют из соотношений

0.46 = 25°, (3.13)

Политропу сжатия строят с помощью лучей ОК и ОД. Из точки С проводят горизонталь до пересечения с осью ординат; из точки пересечения - линию под углом 45° к вертикали до пересечения с лучом ОД, а из этой точки - вторую горизонтальную линию, параллельную оси абсцисс.

Затем из точки С проводят вертикальную линию до пересечения с лучом ОК. Из этой точки пересечения под углом 45?°к вертикали проводим линию до пересечения с осью абсцисс, а из этой точки??вторую вертикальную линию, параллельную оси ординат, до пересечения со второй горизонтальной линией. Точка пересечения этих линий будет промежуточной точкой 1 политропы сжатия. Точку 2 находят аналогично, принимая точку 1 за начало построения.

Политропу расширения строят с помощью лучей ОК и ОЕ, начиная от точки Z", аналогично построению политропы сжатия.

Критерием правильности построения политропы расширения является приход ее в ранее нанесенную точку b.

Следует иметь в виду, что построение кривой политропы расширения следует начинать с точки z , а не z..

После построения политропы сжатия и расширения производят

скругление индикаторной диаграммы с учетом предварения открытия выпускного клапана, опережения зажигания и скорости нарастания давления, а также наносят линии впуска и выпуска. Для этой цели под осью абсцисс проводят на длине хода поршня S как на диаметре полуокружность радиусом R=S/2. Из геометрического центра Оґ в сторону н.м.т. откладывается отрезок

где L - длина шатуна, выбирается из табл. 7 или по прототипу.

Луч О 1.С 1 проводят под углом Q о =, 30° соответствующим углу

опережения зажигания (= 20…30° до в.м.т.), а точку С 1 сносят на

политропу сжатия, получая точку c1.

Для построения линий очистки и наполнения цилиндра откладывают луч О 1?В 1 под углом g =66°. Этот угол соответствует углу предварения открытия выпускного клапана или выпускных окон. Затем проводят вертикальную линию до пересечения с политропой расширения (точка b 1?).

Из точки b 1. проводят линию, определяющую закон изменения

давления на участке индикаторной диаграммы (линия b 1.s ). Линия аs ,

характеризующая продолжение очистки и наполнения цилиндра, может

быть проведена прямой. Следует отметить, что точки s. b 1. можно также

найти по величине потерянной доли хода поршня y .

as =y .S . (3.16)

Индикаторная диаграмма двухтактных двигателей так же, как и двигателей с наддувом, всегда лежит выше линии атмосферного давления.

В индикаторной диаграмме двигателя с наддувом линия впуска может быть выше линии выпуска.

В четырехтактном двигателе рабочие процессы происходят следующим образом:

  • 1. Такт впуска. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 - 0.095 МПа, а температура 40 - 60 С.
  • 2. Такт сжатия. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
  • 3. Такт расширения, или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6-9 МПа, а температура 1800-2000 С. Под действием давления газов поршень 2 перемещается от ВМТ в НМТ - происходит рабочий ход. Около НМТ давление снижается до 0.3-0.5 МПа, а температура до 700 - 900 С.
  • 4. Такт выпуска. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11-0.12 МПа, а температура до 500-700 С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Индикаторную диаграмму, снятую с помощью прибора-индикатора, называют индикаторной диаграммой (рис.1).

Рис. 1

Рассмотрим диаграмму:

  • 0-1 - заполнение цилиндра воздухом (при внутреннем смесеобразовании) или рабочей смесью (при внешнем смесеобразовании) при давлении несколько ниже атмосферного из-за гидродинамического сопротивления впускных клапанов и всасывающего трубопровода,
  • 1-2 - сжатие воздуха или рабочей смеси,
  • 2-3"-3 - период горения рабочей смеси,
  • 3-4 - рабочий ход поршня (расширение продуктов сгорания), совершается механическая работа,
  • 4-5 - выхлоп отработавших газов, падение давления до атмосферного происходит практически при постоянном объеме,
  • 5-0 - освобождение цилиндра от продуктов сгорания.

В реальных тепловых двигателях преобразование теплоты в работу связано с протеканием сложных необратимых процессов (имеются трение, химические реакции в рабочем теле, конечные скорости поршня, теплообмен и др.) Термодинамический анализ такого цикла невозможен Гельман В.М., Москвин М.В. Сельскохозяйственные тракторы и автомобили. - М.: Агропромиздат, 1987, ч I и П..

Индикаторная диаграмма – зависимость давления рабочего тела от объёма цилиндра (рис. 2) – является наиболее информативным источником, позволяющим анализировать процессы, происходящие в цилиндре двигателя внутреннего сгорания. Такты работы двигателя, осуществляющиеся за четыре хода поршня от ВМТ до НМТ показаны на индикаторной диаграмме в координатах p – V следующими отрезками кривой:

r 0 – a 0 – такт впуска;

a 0 – c – такт сжатия;

c z – b 0 такт рабочего хода (расширения);

b 0 – r 0 такт выпуска.

На диаграмме отмечены следующие характерные точки:

b , r – моменты открытия и закрытия выпускного клапана, соответственно;

u , a – моменты открытия и закрытия впускного клапана, соответственно;

Рис. 2. Типичная индикаторная диаграмма четырехтактного

двигателя внутреннего сгорания

Площадь диаграммы, определяющая работу за цикл, состоит из площади, соответствующей положительной индикаторной работе, полученной за такты сжатия и рабочего хода, и площади, соответствующей отрицательной работе, затрачиваемой на очистку и наполнение цилиндра в тактах впуска и выпуска. Отрицательную работу цикла обычно относят к механическим потерям в двигателе.

Таким образом, общая энергия, сообщаемая валу поршневого двигателя за один цикл L , может быть определена алгебраическим сложением работы тактов L = L вп + L сж + L рх + L вып. Мощность, передаваемая валу, определится произведением этой суммы на количество тактов рабочего хода в единицу времени (n /2) и на число цилиндров двигателя i :

Определенная таким образом мощность двигателя называется средней индикаторной мощностью.

Индикаторная диаграмма позволяет разделить цикл четырехтактного двигателя на следующие процессы:

u r 0 – r – a 0 – a – впуск;

a – θ – c" – сжатие;

θ c" – c – z – f – смесеобразование и сгорание;

z – f – b – расширение;

b b 0 – u – r 0 – r – выпуск.

Приведенная типичная индикаторная диаграмма справедлива и для дизельного двигателя. В этом случае точка θ будет соответствовать моменту подачи топлива в цилиндр.

На диаграмме обозначены:

V c объем камеры сгорания (объем цилиндра над поршнем, находящимся в ВМТ);

V a – полный объем цилиндра (объем цилиндра над поршнем в начале такта сжатия);

V n рабочий объем цилиндра, V n = V a – V c .

Степень сжатия.

Индикаторная диаграмма описывает рабочий цикл двигателя, а ограниченная его площадь индикаторную работу цикла. Действительно, [p ∙ ∆V ] = (Н/м 2) ∙ м 3 = Н ∙ м = Дж.

Если принять, что на поршень действует некоторое условное постоянное давление p i , совершающее в течение одного хода поршня работу, равную работе газов за цикл L , то



L = p i ∙ V h ()

где V h – рабочий объем цилиндра.

Это условное давление p i принято называть средним индикаторным давлением.

Среднее индикаторное давление численно равно высоте прямоугольника с основанием, равным рабочему объему цилиндра V h площадью, равной площади, соответствующей работе L .

Так как полезная индикаторная работа пропорциональна среднему индикаторному давлению p i , совершенство рабочего процесса в двигателе можно оценивать на величину этого давления. Чем больше давление p i , тем больше работа L , и, следовательно, рабочий объем цилиндра используется лучше.

Зная среднее индикаторное давление p i , рабочий объем цилиндра V h , число цилиндров i и частоту вращения коленчатого вала n (об/мин), можно определить среднюю индикаторную мощность четырехтактного двигателя N i

Произведение i V h представляет собой рабочий объем двигателя.

Передача индикаторной мощности на вал двигателя сопровождается механическими потерями вследствие трения поршней и поршневых колец о стенки цилиндров, трения в подшипниках кривошипно–шатунного механизма. Кроме того, часть индикаторной мощности затрачивается на преодоление аэродинамических потерь, возникающих при вращении и колебании деталей, на приведение в действие механизма газораспределения, топливных, масляных и водяных насосов и других вспомогательных механизмов двигателя. Часть индикаторной мощности тратится на удаление продуктов сгорания и заполнение цилиндра свежим зарядом. Мощность, соответствующая всем этим потерям, называется мощностью механических потерь N м.

В отличие от индикаторной мощности, полезную мощность, которую можно получить на валу двигателя, называют эффективной мощностью N е. Эффективная мощность меньше индикаторной на величину механических потерь, т.е.

N е = N i – N м. ()

Мощность N м, соответствующую механическим потерям и эффективную мощность двигателя N е определяют опытным путем при стендовых испытаниях с помощью специальных нагрузочных устройств.

Одним из основных показателей качества поршневого двигателя, характеризующего использование им индикаторной мощности для совершения полезной работы является механический КПД, определяемый как отношение эффективной мощности к индикаторной:

η м = N е /N i . ()

Общую энергию, сообщаемую валу поршневого двигателя, можно определить алгебраическим сложением работы тактов и умножив сумму на число рабочих тактов в единицу времени (n /2) и число цилиндров двигателя. Мощность, определяемая таким образом, может быть получена путем интегрирования зависимости давления в функции от объема изображенной на индикаторной диаграмме (рис 4.2,б), и называется средней индикаторной мощностью N . Эту мощность часто связывают с понятием индикаторного среднего эффективного давления р i , рассчитывае­мого следующим образом:

Эффективная мощность N e есть произведение индикаторной мощности N на механический КПД двигателя. Механический КПД двигателя уменьшается с увеличением частоты вращения двигателя из–за потерь на тре­ние и привод агрегатов.

Для построения характеристик авиационного поршневого двигателя его испытывают на балансирном станке с использованием воздушного винта изменяемого шага. Балансирный станок обеспечивает замер величины крутящего момента, числа оборотов коленчатого вала и расхода топлива. По величине замеренного крутящего момента М кр и числу оборотов n определяется измеренная эффективная мощность двигателя

Если двигатель снабжен редуктором, снижающим обороты винта, то формула для замеренной эффективной мощности имеет вид:

где i р – передаточное число редуктора.

Учитывая зависимость эффективной мощности двигателя от атмосферных условий, замеренную мощность для сравнения результатов испытаний приводят к стандартным атмосферным условиям по формуле

где N e – эффективная мощность двигателя, приведенная к стандартным атмосферным условиям;

t изм – температура наружного воздуха во время испытаний, ºС;

B – давление наружного воздуха, мм.рт.ст.,

р – абсолютная влажность воздуха, мм.рт.ст.

Эффективный удельный расход топлива g е определяется по формуле:

где G T и – расход топлива и эффективная мощность двигателя, измеренные при испытаниях.

Понравилась статья? Поделитесь с друзьями!