Двигатели внутреннего сгорания. Рабочие процессы в поршневых и комбинированных двигателях классификация двигателей внутреннего сгорания Основной недостаток поршневых двигателей внутреннего сгорания

Особенности двигателей внутреннего сгорания


Двигатели внутреннего сгорания принадлежат к наиболее распространенному типу тепловых двигателей, т. е. таких двигателей, в которых теплота, выделяющаяся при сгорании топлива, преобразуется в механическую энергию. Тепловые двигатели могут быть разделены на две основные группы:

двигатели внешнего сгорания - паровые машины, паровые турбины, двигатели Стирлинга и т. п. Из двигателей этой группы в учебнике рассмотрены только двигатели Стирлинга, так как их конструкции близки конструкциям двигателей внутреннего сгорания;

двигатели внутреннего сгорания. В двигателях внутреннего сгорания процессы сжигания топлива, выделения теплоты и преобразования части ее в механическую работу происходят непосредственно внутри двигателя. К таким двигателям относятся поршневые и комбинированные двигатели, газовые турбины и реактивные двигатели.

Принципиальные схемы двигателей внутреннего сгорания показаны на рис. 1.

У поршневого двигателя (рис. 1,а) основными деталями являются: цилиндр крышка (головка) цилиндра; картер поршень; шатун; коленчатый вал впускные и выпускные клапаны. Топливо и необходимый для его сгорания воздух вводятся в объем цилиндра двигателя, ограниченный днищем крышки, стенками цилиндра и днищем поршня. Образующиеся при сгорании газы высокой температуры и давления давят на поршень и перемещают его в цилиндре. Поступательное движение поршня через шатун преобразуется во вращательное коленчатым валом, расположенным в картере. В связи с возвратно-поступательным движением поршня сгорание топлива в поршневых двигателях возможно лишь периодически последовательными порциями, причем сгоранию каждой порции должен предшествовать ряд подготовительных процессов.

В газовых турбинах (рис. 1, б) сжигание топлива происходит в специальной камере сгорания. Топливо в нее подается насосом через форсунку. Воздух, необходимый для горения, нагнетается в камеру сгорания компрессором, установленным на одном валу с рабочим колесом газовой турбины. Продукты сгорания через направляющий аппарат поступают в газовую турбину.

Газовая турбина, имеющая рабочие органы в виде лопаток специального профиля, расположенных на диске и образующих вместе с последним вращающееся рабочее колесо, может работать с высокой частотой вращения. Применение в турбине нескольких последовательно расположенных рядов лопаток (многоступенчатые турбины) позволяет более полно использовать энергию горячих газов. Однако газовые турбины пока уступают по экономичности поршневым двигателям внутреннего сгорания, особенно при работе с неполной нагрузкой, и, кроме того, отличаются большой теплонапряженностью лопаток рабочего колеса, обусловленной их непрерывной работой в среде газов с высокой температурой. При снижении температуры газов, поступающих в турбину, для повышения надежности лопаток уменьшается мощность и ухудшается экономичность турбины. Газовые турбины широко используются в качестве вспомогательных агрегатов в поршневых и реактивных двигателях, а также как самостоятельные силовые установки. Применение жаростойких материалов и охлаждения лопаток, усовершенствование термодинамических схем газовых турбин позволяют улучшить их показатели и расширить область использования.

Рис. 1. Схемы двигателей внутреннего сгорания

В жидкостных реактивных двигателях (рис. 1, в) жидкое топливо и окислитель тем или иным способом (например, насосами) подаются под давлением из баков в камеру сгорания. Продукты сгорания расширяются в сопле и вытекают в окружающую среду с большой скоростью. Истечение газов из сопла является причиной возникновения реактивной тяги двигателя.

Положительным свойством реактивных двигателей следует считать то, что реактивная тяга их почти не зависит от скорости движения установки, а мощность ее возрастает с увеличением скорости поступления в двигатель воздуха, т. е. с повышением скорости движения. Это свойство используют при применении турбореактивных двигателей в авиации. Основные недостатки реактивных двигателей - относительно низкая экономичность и сравнительно небольшой срок службы.

Комбинированными двигателями внутреннего сгорания называются двигатели, состоящие из поршневой части и нескольких компрессионных и расширительных машин (или устройств), а также устройств для подвода и отвода теплоты, объединенных между собой общим рабочим телом. В качестве поршневой части комбинированного двигателя используется поршневой двигатель внутреннего сгорания.

Энергия в такой установке передается потребителю валом поршневой части, или валом другой расширительной машины, или обоими валами одновременно. Число компрессионных и расширительных машин, их типы и конструкции, связь их с поршневой частью и между собой определяются назначением комбинированного двигателя, его схемой и условиями эксплуатации. Наиболее компактны и экономичны комбинированные двигатели, в которых продолжение расширения выпускных газов поршневой части осуществляется в газовой турбине, а предварительное сжатие свежего заряда производится в центробежном или осевом компрессоре (последний пока не получил распространения), причем мощность потребителю обычно передается через коленчатый вал поршневой части.

Поршневой двигатель и газовая турбина в составе комбинированного двигателя удачно дополняют друг друга: в первом наиболее эффективно в механическую работу преобразуется теплота малых объемов газа при высоком давлении, а во второй наилучшим образом используется теплота больших объемов газа при низком давлении.

Комбинированный двигатель, одна из широко распространенных схем которого показана на рис. 2, состоит из поршневой части, в качестве которой используется поршневой двигатель внутреннего сгорания, газовой турбины и компрессора. Выпускные газы после поршневого двигателя, имеющие еще высокие температуру и давление, приводят во вращение лопатки рабочего колеса газовой турбины, которая передает крутящий момент компрессору. Компрессор засасывает воздух из атмосферы и под определенным давлением нагнетает его в цилиндры поршневого двигателя. Увеличение наполнения цилиндров двигателя воздухом путем повышения давления на впуске называют наддувом. При наддуве плотность воздуха повышается и, следовательно, увеличивается свежий заряд, заполняющий цилиндр при впуске, по сравнению с зарядом воздуха в том же двигателе без наддува.

Для сгорания топлива, вводимого в цилиндр, требуется определенная масса воздуха (для полного сгорания 1 кг жидкого топлива теоретически необходимо около 15 кг воздуха). Поэтому чем больше воздуха поступит в цилиндр, тем больше топлива можно сжечь в нем, т. е. получить большую мощность.

Основные преимущества комбинированного двигателя - малые объем и масса, приходящаяся на 1 кВт, а также высокая экономичность, часто превосходящая экономичность обычного поршневого двигателя.

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания, получившие широкое применение в транспортной и стационарной энергетике. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу, высокую экономичность, их характеристики хорошо согласуются с характеристиками потребителя. Основным недостатком двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошипно-шатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

Рис. 2. Схема комбинированного двигателя

В учебнике рассматриваются поршневые и комбинированные двигатели внутреннего сгорания, получившие широкое распространение.

К атегория: - Устройство и работа двигателя

Тема: ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ.

План лекции:

2. Классификация ДВС.

3. Общее устройство ДВС.

4. Основные понятия и определения.

5. Топлива ДВС.

1. Определение двигателей внутреннего сгорания.

Двигатели внутреннего сгорания (ДВС) называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение её в механически работу происходит непосредственно в его цилиндре.

2. Классификация ДВС

По способу осуществления рабочего цикла ДВС подразделяются на две большие категории:

1) четырёхтактные ДВС, у которых рабочий цикл в каждом цилиндре совершается за четыре хода поршня или два оборота коленчатого вала;

2) двухтактные ДВС, у которых рабочий цикл в каждом цилиндре совершается за два хода поршня или один оборот коленчатого вала.

По способу смесеобразования четырёхтактные и двухтактные ДВС различают:

1) ДВС с внешним смесеобразованием, в которых горючая смесь образуется за пределами цилиндра (к ним относятся карбюраторные и газовые двигатели);

2) ДВС с внутренним смесеобразованием, в которых горючая смесь образуется непосредственно внутри цилиндра (к ним относятся дизели и двигатели с впрыском лёгкого топлива в цилиндр).

По способу воспламенения горючей смеси различают:

1) ДВС с воспламенением горючей смеси от электрической искры (карбюраторные, газовые и с впрыском лёгкого топлива);

2) ДВС с воспламенением топлива в процессе смесеобразования от высокой температуры сжатого воздуха (дизели).

По виду применяемого топлива различают:

1) ДВС, работающие на легком жидком топливе (бензине и керосине);

2) ДВС, работающие на тяжёлом жидком топливе (газойле и дизельном топливе);

3) ДВС, работающие на газовом топливе (сжатый и сжиженный газ; газ, поступающий из специальных газогенераторов, в которых при недостатке кислорода сжигается твёрдое топливо – дрова или уголь).

По способу охлаждения различают:

1) ДВС с жидкостным охлаждением;

2) ДВС с воздушным охлаждением.

По числу и расположению цилиндров различают:

1) одно и многоцилиндровые ДВС;

2) однорядные (вертикальные и горизонтальные);

3) двурядные ( -образные, с противолежащими цилиндрами).

По назначению различают:

1) транспортные ДВС, устанавливаемые на различных транспортных средствах (автомобили, тракторы, строительные машины и др. объекты);

2) стационарные;

3) специальные ДВС, играющие как правило вспомогательную роль.

3. Общее устройство ДВС

Широко используемые в современной технике ДВС состоят из двух основных механизмов: кривошипно-шатунного и газораспределительного; и пяти систем: системы питания, охлаждения, смазки, пуска и зажигания (в карбюраторных, газовых и двигателях с впрыском лёгкого топлива).

Кривошипно-шатунный механизм предназначен для восприятия давления газов и преобразования прямолинейного движения поршня во вращательное движение коленчатого вала.

Механизм газораспределения предназначен для заполнения цилиндра горючей смесью или воздухом и для очистки цилиндра от продуктов сгорания.

Механизм газораспределения четырёхтактных двигателей состоит из впускного и выпускного клапанов, приводимых в действие распределительным (кулачковым валом, который через блок шестерен приводится во вращение от коленчатого вала. Скорость вращения распределительного вала вдвое меньше скорости вращения коленчатого вала.

Механизм газораспределения двухтактных двигателей как правило выполнен в виде двух поперечных щелей (отверстий) в цилиндре: выпускной и впускной, открываемых последовательно в конце рабочего хода поршня.

Система питания предназначена для приготовления и подачи в запоршневое пространство горючей смеси нужного качества (карбюраторные и газовые двигатели) или порций распыленного топлива в определённый момент (дизели).

В карбюраторных двигателях топливо с помощью насоса или самотёком поступает в карбюратор, где смешивается с воздухом в определённой пропорции и.через впускной клапан или отверстие поступает в цилиндр.

В газовых двигателях воздух и горючий газ смешиваются в специальных смесителях.

В дизельных двигателях и ДВС с впрыском лёгкого топлива подача топлива в цилиндр осуществляется в определённый момент как правило с помощью плунжерного насоса.

Система охлаждения предназначена для принудительного отвода тепла от нагретых деталей: блока цилиндров, головки блока цилиндров и др. В зависимости от вида вещества отводящего тепло, различают жидкостные и воздушные системы охлаждения.

Жидкостная система охлаждения состоит из каналов окружающих цилиндры (жидкостная рубашка), жидкостного насоса, радиатора, вентилятора и ряда вспомогательных элементов. Охлажденная в радиаторе жидкость с помощью насоса подаётся в жидкостную рубашку, охлаждает блок цилиндров, нагревается и вновь попадает в радиатор. В радиаторе жидкость охлаждается за счёт набегающего потока воздуха и потока, создаваемого вентилятором.

Воздушная система охлаждения представляет собой оребрение цилиндров двигателя, обдуваемое набегающим или создаваемым вентилятором потоком воздуха.

Система смазки служит для непрерывного подвода смазки к узлам трения.

Система пуска предназначена для быстрого и надёжного пуска двигателя и представляет собой как правило вспомогательный двигатель: электрический (стартер) или маломощный бензиновый).

Система зажигания применяется в карбюраторных двигателях и служит для принудительного воспламенения горючей смеси с помощью электрической искры, создаваемой в свече зажигания, ввернутой в головку цилиндра двигателя.

4. Основные понятия и определения

Верхней мёртвой точкой – ВМТ, называют положение поршня, наиболее удалённое от оси коленчатого вала.

Нижней мёртвой точкой – НМТ, называют положение поршня, наименее отдалённое от оси коленчатого вала.

В мёртвых точках скорость поршня равна , т.к. в них изменяется направление движения поршня.

Перемещение поршня от ВМТ к НМТ или наоборот называется ходом поршня и обозначается .

Объём полости цилиндра при нахождении поршня в НМТ называют полным объёмом цилиндра и обозначают .

Степенью сжатия двигателя называют отношение полного объёма цилиндра к объёму камеры сгорания

Степень сжатия показывает во сколько раз уменьшается объём запоршневого пространства при перемещении поршня из НМТ в ВМТ. Как будет показано в дальнейшем степень сжатия в значительной мере определяет экономичность (КПД) любого ДВС.

Графическая зависимость давления газов в запоршневом пространстве от объёма запоршневого пространства, перемещения поршня или угла поворота коленчатого вала носит название индикаторной диаграммы двигателя .

5. Топлива ДВС

5.1. Топливо для карбюраторных двигателей

В карбюраторных двигателях в качестве топлива применяют бензин. Основной тепловой показатель бензина – его низшая теплота сгорания (около 44 МДж/кг). Качество бензина оценивают по его основным эксплуатационно-техническим свойствам: испаряемости, антидетонационной стойкости, термоокислительной стабильности, отсутствию механических примесей и воды, стабильности при хранении и транспортировке.

Испаряемость бензина характеризует способность его переходить из жидкой: фазы в паровую. Испаряемость бензина определяют по его фракционному составу, который находится его разгонкой при различной температуре. Об испаряемости бензина судят по температурам выкипания 10, 50 и 90% бензина. Так, например, температура выкипания 10% бензина характеризует его пусковые качества. Чем больше испаряемость при малых температурах, тем лучше качество бензина.

Бензины имеют различную антидетонационную стойкость, т.е. различную склонность к детонации. Антидетонационная стойкость бензина оценивается октановьм числом (ОЧ), которое численно равно процентному содержанию по объему изооктана в смеси изооктана и гептана, разноценной по детонационной стойкости данному топливу. ОЧ изооктана принимают за 100, а гептана – за нуль. Чем выше ОЧ бензина, тем меньше его склонность к детонации.

Для повышения ОЧ к бензину добавляют этиловую жидкость, которая состоит из тетраэтилсвинца (ТЭС) – антидетонатора и дибромэтена – выносителя. Этиловую жидкость добавляют к бензину в количестве 0,5-1 см 3 на 1 кг бензина. Бензины с добавкой этиловой жидкости называют этилированными, они ядовиты, и при их использовании необходимо соблюдать меры предосторожности. Этилированный бензин окрашен в красно-оранжевый или сине-зеленый цвет.

Бензин не должен содержать коррозирующих веществ (серы, сернистых соединений, водорастворимых кислот и щелочей), так как присутствие их приводит к коррозии деталей двигателя.

Термоокислительная стабильность бензина характеризует его стойкость против смоло- и нагарообразования. Повышенное нагаро- и смолообразование вызывает ухудшение отвода теплоты от стенок камеры сгорания, уменьшение объема, камеры сгорания и нарушение нормальной подачи топлива в двигатель, что приводит к снижению мощности и экономичности двигателя.

Бензин не должен содержать механических примесей и воды. Присутствие механических примесей вызывает засорение фильтров, топливопроводов, каналов карбюратора и увеличивает износ стенок цилиндров и других деталей. Наличие воды в бензине затрудняет пуск двигателя.

Стабильность бензина при хранении характеризует его способность сохранять свои первоначальные физические и химические свойства при хранении и транспортировке.

Автомобильные бензины маркируются буквой А с цифровых индексом, показывают значение ОЧ. В соответствии с ГОСТ 4095-75 выпускаются бензины марок А-66, А-72, А-76, АИ-93, АИ-98.

5.2. Топливо для дизельных двигателей

В дизельных двигателях применяют дизельное топливо, являющееся продуктом переработки нефти. Топливо, используемое в дизельных двигателях, должно обладать следующими основными качествами: оптимальной вязкостью, низкой температурой застывания, высокой склонностью к воспламенению, высокой термоокислительной стабильностью, высокими антикоррозионными свойствами, отсутствием механических примесей и воды, хорошей стабильностью при хранении и транспортировке.

Вязкость дизельного топлива влияет на процессы топливоподачи и распыливания. При недостаточной вязкости топлива увенчивается утечка, его через зазоры в распылителях форсунки и в нерцизионных парах топливного насоса, а при высокой ухудшаются процессы топливоподачи, распыливания и смесеобразования в двигателе. вязкость топлива зависит от температуры. Температура застывания топлива влияет на процесс подачи топлива из топливного бака. в цилиндры двигателя. Поэтому топливо должно иметь низкую температуру застывания.

Склонность топлива к воспламенению влияет на протекание процесса сгорания. Дизельные топлива., обладающие высокой склонностью к воспламенения, обеспечивают плавное протекание процесса сгорания, без резкого повышения давления, воспламеняемость топлива оценивают цетановым числом (ЦЧ), которое численно равно процентному содержанию по объему цетана в смеси цетана и альфаметилнафталина, равноценной по воспламеняемости данному топливу. Для дизельных топлив ЦЧ = 40-60.

Термоокислительная стабильность дизельного топлива характеризует его стойкость против смоло- и нагарообразования. Повышенное нагаро- и смолообразование вызывает ухудшение отвода теплоты от стенок камеры сгорания и нарушение подачи топлива через форсунки в двигатель, что приводит к снижению мощности и экономичности двигателя.

Дизельное топливо не должно содержать коррозирующих веществ, так как присутствие их приводит к коррозии деталей топливоподающей аппаратуры и двигателя. Дизельное топливо не должно содержать механических примесей и воды. Присутствие механических примесей вызывает засорение фильтров, топливопроводов, форсунок, каналов топливного насосе, и увеличивает износ деталей топливной аппаратуры двигателя. Стабильность дизельного топлива характеризует его способность сохранять свои начальные физические и химические свойства при хранении и транспортировке.

Для автотракторных дизелей применяют выпускаемые промышленностью топлива: ДЛ – дизельное летнее (при температуре выше 0°С), ДЗ – дизельное зимнее (при температуре до -30°С); ДА – дизельное арктическое (при температуре ниже – 30°С) (ГОСТ 4749-73).

Тепловое расширение

Поршневые двигатели внутреннего сгорания

Классификация ДВС

Основы устройства поршневых ДВС

Принцип работы

Принцип действия четырехтактного карбюраторного двигателя

Принцип действия четырехтактного дизеля

Принцип действия двухтактного двигателя

Рабочий цикл четырехтактного двигателя

Рабочие циклы двухтактных двигателей

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РАБОТУ ДВИГАТЕЛЕЙ

Среднее индикаторное давление и индикаторная мощность

Эффективная мощность и средние эффективные давления

Индикаторный КПД и удельный индикаторный расход топлива

Эффективный КПД и удельный эффективный расход топлива

Тепловой баланс двигателя

Инновации

Введение

Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог и ограничение возможностей использования рек для судоходства делают автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.

Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства - автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения.

Начало создания автомобиля было положено более двухсот лет назад (название "автомобиль" происходит от греческого слова autos - "сам" и латинского mobilis - "подвижный"), когда стали изготовлять "самодвижущиеся" повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка крестьянин Л.Шамшуренков создал довольно совершенную для своего времени "самобеглую коляску", приводимого в движение силой двух человек. Позднее русский изобретатель И.П.Кулибин создал "самокатную тележку" с педальным приводом. С появлением паровой машины создание самодвижущихся повозок быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через несколько лет и в Англии были построены паровые автомобили. Широкое распространение автомобиля как транспортного средства начинается с появлением быстроходного двигателя внутреннего сгорания. В 1885 г. Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г. К.Бенц - трехколесную повозку. Примерно в это же время в индустриально развитых странах (Франция, Великобритания, США) создаются автомобили с двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей. Всего завод построил 451 легковой автомобиль и небольшое количество грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около 9000 автомобилей, из них большая часть - зарубежного производства. После Великой Октябрьской социалистической революции практически заново пришлось создавать отечественную автомобильную промышленность. Начало развития российского автомобилестроения относится к 1924 году, когда в Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство автомобилей. В 1931 г. на заводе АМО началось массовое производство грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод малолитражных автомобилей. Несколько позже был создан Уральский автомобильный завод. За годы послевоенных пятилеток вступили в строй Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы. Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод им. 50-летия СССР.

За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности.

Двигатели внутреннего сгорания

В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т.д.

Тепловые двигатели могут быть разделены на две основные группы:

1. Двигатели с внешним сгоранием - паровые машины, паровые турбины, двигатели Стирлинга и т.д.

2. Двигатели внутреннего сгорания. В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания

топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. На большинстве современных автомобилей установлены двигатели внутреннего сгорания.

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу. Основным недостатком этих двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания (ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта машина была еще весьма несовершенной.

В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл:

1. всасывание;

2. сжатие;

3. горение и расширение;

4. выхлоп.

Эта идея была использована немецким изобретателем Н.Отто, построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания. КПД такого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.

Быстрое распространение ДВС в промышленности, на транспорте, в сельском хозяйстве и стационарной энергетике была обусловлена рядом их положительных особенностей.

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями и значительным перепадом температур между источником теплоты и холодильником обеспечивает высокую экономичность этих двигателей. Высокая экономичность - одно из положительных качеств ДВС.

Среди ДВС дизель в настоящее время является таким двигателем, который преобразует химическую энергию топлива в механическую работу с наиболее высоким КПД в широком диапазоне изменения мощности. Это качество дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут быть соединены практически с любым потребителем энергии. Это объясняется широкими возможностями получения соответствующих характеристик изменения мощности и крутящего момента этих двигателей. Рассматриваемые двигатели успешно используются на автомобилях, тракторах, сельскохозяйственных машинах, тепловозах, судах, электростанциях и т.д., т.е. ДВС отличаются хорошей приспособляемостью к потребителю.

Сравнительно невысокая начальная стоимость, компактность и малая масса ДВС позволили широко использовать их на силовых установках, находящих широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС могут летать десятки часов без пополнения горючего.

Важным положительным качеством ДВС является возможность их быстрого пуска в обычных условиях. Двигатели, работающие при низких температурах, снабжаются специальными устройствами для облегчения и ускорения пуска. После пуска двигатели сравнительно быстро могут принимать полную нагрузку. ДВС обладают значительным тормозным моментом, что очень важно при использовании их на транспортных установках.

Положительным качеством дизелей является способность одного двигателя работать на многих топливах. Так известны конструкции автомобильных многотопливных двигателей, а также судовых двигателей большой мощности, которые работают на различных топливах - от дизельного до котельного мазута.

Но наряду с положительными качествами ДВС обладают рядом недостатков. Среди них ограниченное по сравнению, например с паровыми и газовыми турбинами агрегатная мощность, высокий уровень шума, относительно большая частота вращения коленчатого вала при пуске и невозможность непосредственного соединения его с ведущими колесами потребителя, токсичность выхлопных газов, возвратно-поступательное движение поршня, ограничивающие частоту вращения и являющиеся причиной появления неуравновешенных сил инерции и моментов от них.

Но невозможно было бы создание двигателей внутреннего сгорания, их развития и применения, если бы не эффект теплового расширения. Ведь в процессе теплового расширения нагретые до высокой температуры газы совершают полезную работу. Вследствие быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко повышается давление, под воздействием которого происходит перемещение поршня в цилиндре. А это-то и есть та самая нужная технологическая функция, т.е. силовое воздействие, создание больших давлений, которую выполняет тепловое расширение, и ради которой это явление применяют в различных технологиях и в частности в ДВС.

Двигатель внутреннего сгорания (ДВС) - автомобильный механизм, работа которого зависит от преобразования одного вида энергии (в частности, химической реакции от сгорания топлива) в другой вид (механическую энергию для запуска автомобиля).

В качестве достоинств двигателя внутреннего сгорания , которые определяют его широчайшее использование, отмечают: автономность, относительно невысокая стоимость, возможность использования на различных потребителях, многотопливность (двс могут работать на бензине, дизельном топливе, газе и даже на спирте и рапсовом масле). Так же к достоинствам можно отнести достаточно высокую надежность ДВС и неприхотливость в работе, простоту обслуживания.

При этом двигатели внутреннего сгорания обладают рядом недостатков : низкий коэффициент полезного действия, токсичность, шумность.

Однако по сочетанию своих достоинств и недостатков на сегодняшний день в транспортной сфере (в качестве автомобильных двигателей) серьезных конкурентов у двигателей внутреннего сгорания нет, и в ближайшее время не предвидится.

ДВС могут разделяться по нескольким категориям

По типу преобразования энергии:

  • турбинные;
  • поршневые;
  • реактивные;
  • комбинированные

По типу рабочего цикла:

  • с 2-мя тактами цикла;
  • с 4-мя тактами цикла

По типу топлива, которое используется :

  • на бензине;
  • на дизеле;
  • на газе

Устройство ДВС

ДВС имеет достаточно сложное устройство, которое может быть оснащено:

  • корпусом (блоком и головкой цилиндров);
  • рабочими механизмами (кривошипно-шатунным и газораспределительным);
  • различными системами (топливной, впускной, выпускной, смазки, зажигания, охлаждения и управления).

КШМ (кривошипно-шатунный механизм) обеспечивает движение возвратно-поступательного характера поршня и обратное вращательное движение вала.

Газораспределительный механизм предназначен для подачи топлива и воздуха в цилиндры, для вывода отработанной газовой смеси.

Топливная система предназначена для обеспечения автомобильного двигателя топливом.

Система впуска отвечает за своевременную подачу воздуха в ДВС, а система выпуска - за вывод отработанных газов, уменьшения уровня шума от работы цилиндров, а также снижения их токсичности.

Система впрыска обеспечивает доставку ТПС в двигатель ВС.

Система розжига (зажигания) выполняет функцию розжига смеси воздуха и топлива, которая поступает в ДВС.

Система смазки обеспечивает своевременную смазку всех внутренних частей и деталей двигателя.

Система охлаждения обеспечивает интенсивное охлаждение рабочей системы ДВС во время работы.

Система управления отвечает за контроль над слаженной работой всех важных систем ДВС.

Принцип работы ДВС

Двигатель работает на тепловой энергии газов, образующихся при сгорании используемого топлива , что в свою очередь запускает поршневое движение в цилиндре. ДВС работает циклически. Для того чтобы повторялся каждый последующий цикл, отработанная смесь удаляется, а в поршень поступает новая часть топлива и воздуха.

В современных моделях автомобилей используются двигатели, работающие на 4-х тактах. Работа такого двигателя основана на четырех равных по времени частях. Такт - это процесс, который осуществляется в цилиндре автомобильного двигателя за один рабочий ход (поднятие/опускание) поршня.

Поршень в цилиндре осуществляет четыре тактовых движения - два вверх и два вниз. Тактовое движение начинается с крайней точки (нижней или верхней) и проходит следующие этапы: впуск, сжатие, движение и выпуск.

Более детально рассмотрим особенности работы ДВС на каждом из тактов.

Такт впуска

Впуск начинается в крайней точке (МТ - мертвая точка). Не имеет значения, с какой точки начинается движение, с верхней МТ или нижней МТ. Начиная свое движение в цилиндре, поршень захватывает поступившую топливно-воздушную смесь при открытом клапане впуска. При этом ТВС может образовываться как во впускном коллекторе, так и в камере сгорания.

Такт сжатия

При сжатии клапаны впуска полностью закрыты, ТВС начинает сжиматься непосредственно в цилиндрах. Это происходит за счет обратного поршневого движения от одной МТ к другой. При этом ТВС сжимается до размера самой камеры сгорания. Сильное сжатие обеспечивает более продуктивную работу ВДС.

Такт движения (рабочий ход)

На данном такте осуществляется розжиг воздушно-топливной смеси. Это может быть как путем самовоспламенения (для дизельных двигателей), так и принудительным воспламенением (для бензиновых двигателей). Вследствие возгорания ВТС происходит быстрое образование газов, энергия которых воздействует на поршень, приводя его в движение. КШМ трансформирует поступательные поршневые движения во вращательные вала. Клапаны системы на такте движения, как и на такте сжатия должны быть полностью закрытыми.

Такт выпуска

На последнем такте выпуска происходит открытие всех выпускных клапанов, после чего газораспределительный механизм удаляет отработанные газы из ДВС в выпускную систему, где происходит очистка, охлаждение и снижение уровня шума. В конце происходит полный выброс газов в атмосферу.

После завершения такта выпуска, циклы повторяются, начиная с такта впуска.

Видео, в котором наглядно показывается устройство и работа двигателя внутреннего сгорания:

Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

Принцип работы двигателей внутреннего сгорания

Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую.

Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

На сегодняшний день устройство ДВС может иметь три основных вида:

  • часто называемый легким;
  • четырехтактный силовой агрегат, позволяющий добиться более высоких показателей мощности и значений КПД;
  • обладающие повышенными мощностными характеристиками.

Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

Преимущества двигателей внутреннего сгорания

В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

  • гораздо более компактные размеры;
  • более высокие показатели мощности;
  • оптимальные значения КПД.

Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или керосин и даже обычная древесина.

Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

Краткий исторический экскурс

Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

Первый четырехтактный двигатель внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора.

А в самом конце позапрошлого века знаменитый немецкий инженер предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

Основные виды и типы ДВС

Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

Бензиновые двигатели

Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина.

В свою очередь, такие силовые установки принято подразделять на две большие группы:

  • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
  • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска "Коммон Рейл". Устанавливаются почти на все современные автомобили.

Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация - заметно сложнее.

Дизельные двигатели

На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

Главным принципиальным отличием внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

  • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
  • большими габаритами и весовыми характеристиками;
  • сложностями с запуском при экстремальных погодных и климатических условиях;
  • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

Газовые двигатели

Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности.

На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, - при помощи электрической искры, исходящей от свечи зажигания.

Комбинированные типы двигателей внутреннего сгорания

Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?

Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

Обслуживание и ремонт двигателей внутреннего сгорания

Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.

Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

Итак, мы выяснили, что собой представляет данный силовой агрегат.

Понравилась статья? Поделитесь с друзьями!